An inquisitive dynamic epistemic logic

Floris Roelofsen

Amsterdam, December 1, 2011
Outline

Main result

A system that combines the main features of dynamic epistemic logic with those of inquisitive semantics

Roadmap

1. Brief review of DELQ (van Benthem, Miniča, . . .)

2. Brief review of INQB (Ciardelli, Groenendijk, Roelofsen, . . .)

3. An inquisitive epistemic logic, IEL

4. An inquisitive dynamic epistemic logic, IDEL
Dynamic epistemic logic with questions

Language (simplified)

\[p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \rightarrow \psi \mid K_a \varphi \mid [!] \varphi \psi \mid [?] \varphi \psi \]

- \([!] \varphi \psi = \text{‘asserting } \varphi \text{ leads to a state where } \psi \text{ holds’} \]
- \([?] \varphi \psi = \text{‘asking whether } \varphi \text{ leads to a state where } \psi \text{ holds’} \]
Dynamic epistemic logic with questions

Epistemic issue models

\[M = \langle W, \sim \mathcal{A}, \approx \mathcal{A}, V \rangle \]

- \(\sim \mathcal{A} = \{ \sim a \mid a \in \mathcal{A} \} \)

 A set of equivalence relations on \(W \) encoding **epistemic indistinguishability** for each agent

- \(\approx \mathcal{A} = \{ \approx a \mid a \in \mathcal{A} \} \)

 A set of equivalence relations on \(W \) encoding the **issues** that have been raised by each agent
Dynamic epistemic logic with questions

Interpretation

• The static fragment of the language is interpreted as usual

• Dynamic speech act operators change the model of evaluation
 • Assertions provide information; they change $\sim \mathcal{A}$
 • Questions raise issues; they change $\approx \mathcal{A}$

• Crucial clauses:
 • $M, w \models [!] \varphi \psi$ iff $M^1\varphi, w \models \psi$
 • $M, w \models [?] \varphi \psi$ iff $M^?\varphi, w \models \psi$
Dynamic epistemic logic with questions

Discussion

- The basic static fragment of the language, and its semantic interpretation, are completely classical

- Questions enter the picture at the level of speech acts

- The basic static language does not contain sentences that are interrogative in any syntactic sense, or inquisitive in any semantic sense
Dynamic epistemic logic with questions

Alternative approach

• Change the semantics of the basic static fragment of the language in such a way that the meaning of a sentence embodies both its informative and its inquisitive content

• Add interrogative sentences, $?\varphi$, to the static language

• The dynamic part of the language can then be simplified. We just need a single general purpose speech act operator:

$$[\varphi]\psi = \text{`uttering } \varphi \text{ leads to a state where } \psi \text{ holds'}$$
Main advantage of the alternative approach

If inquisitiveness enters the picture at the syntactic/semantic level, it becomes possible to deal with embedded questions

(1) John knows who will come to the party. \[K_a ? x. P x \]
(2) John knows whether Mary will come to the party. \[K_a ? p \]
(3) If it rains, will Mary still come to the party? \[p \rightarrow ? q \]

Embedded questions cannot be dealt with straightforwardly in DELQ, because sentences like \(K_a ? q \) and \(p \rightarrow ? q \) are not in \(L_{DELQ} \)
Inquisitive semantics

Language

$p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \rightarrow \psi \mid ?\varphi$

- Interrogative sentences, but
- no knowledge operators, and
- no speech act operators
Inquisitive semantics

Models

- Sentences are evaluated relative to information states, i.e., sets of possible worlds
- The central notion is support, rather than truth
- In uttering a sentence φ, a speaker proposes to update the common ground in such a way that it comes to support φ
Inquisitive semantics

Support

1. \(s \models p \) iff \(\forall w \in s : w(p) = 1 \)
2. \(s \models \neg \varphi \) iff \(\forall w \in s : \{w\} \models \varphi \)
3. \(s \models \varphi \land \psi \) iff \(s \models \varphi \) and \(s \models \psi \)
4. \(s \models \varphi \lor \psi \) iff \(s \models \varphi \) or \(s \models \psi \)
5. \(s \models \varphi \rightarrow \psi \) iff \(\forall t \subseteq s : \text{if } t \models \varphi \text{ then } t \models \psi \)
6. \(s \models ?\varphi \) iff \(s \models \varphi \) or \(s \models \neg \varphi \)

Propositions and possibilities

• \([\varphi] = \) the set of all states supporting \(\varphi \)
• A possibility for \(\varphi \) is a maximal state supporting \(\varphi \)
Inquisitive semantics

Illustration
The semantics applies deals in a uniform way with declaratives, interrogatives, and embedded interrogatives:
Inquisitive semantics

Informative content
In uttering a sentence φ, a speaker proposes to eliminate all worlds that are not contained in any state supporting φ

- $\text{info}(\varphi) = \bigcup[\varphi]$

Informative and inquisitive sentences
- φ is informative iff $\text{info}(\varphi) \neq \mathcal{W}$
- φ is inquisitive iff $\text{info}(\varphi) \not\models \varphi$
Questions and assertions

- φ is a question iff it is non-informative.
- φ is an assertion iff it is non-inquisitive.
Inquisitive semantics

Discussion

• **Inquisitiveness** enters the picture at the level of **sentences** and their **semantic content**

• The system deals straightforwardly with **conditional questions**

• It does not deal with **knowledge-wh** ascriptions yet, because $\mathcal{L}_{\text{INQB}}$ does not contain knowledge operators

• The system does not allow us to specify precisely what happens at the **speech act level**

• Thus, integrating inquisitive semantics with dynamic epistemic logic will help both traditions a step further
Inquisitive epistemic logic

Language

\[p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \rightarrow \psi \mid ?\varphi \mid K_a\varphi \]

- Interrogative sentences
- Knowledge operators
- No speech act operators
Inquisitive epistemic logic

States

- Sentences are still evaluated relative to states

- States are now sets of worlds in the canonical model for S5 (or some other epistemic logic)

- As before, the central notion is support, rather than truth

- In uttering a sentence φ, a speaker proposes to update the common ground in such a way that it comes to support φ
Inquisitive epistemic logic

Support

1. $s \models p \iff \forall w \in s : V^c(w, p) = 1$
2. $s \models \neg \varphi \iff \forall w \in s : \{w\} \not\models \varphi$
3. $s \models \varphi \land \psi \iff s \models \varphi \text{ and } s \models \psi$
4. $s \models \varphi \lor \psi \iff s \models \varphi \text{ or } s \models \psi$
5. $s \models \varphi \rightarrow \psi \iff \forall t \subseteq s : \text{if } t \models \varphi \text{ then } t \models \psi$
6. $s \models ?\varphi \iff s \models \varphi \text{ or } s \models \neg \varphi$
7. $s \models K_a \varphi \iff \forall w \in s : \sigma_{a, w} \models \varphi$

Propositions

- As before, $[\varphi] = \{s \mid s \models \varphi\}$
Inquisitive epistemic logic

Knowledge ascription

We now have a unified treatment of knowledge-
that and knowledge-
wh ascription:

(4) John knows that Peter will come. \[K_a p \]
(5) John knows whether Peter will come. \[K_a ? p \]

A state \(s \) supports \(K_a ? p \) iff for every \(w \in s \),
a’s information state in \(w \) supports either \(p \) or \(\neg p \).
Inquisitive epistemic logic

All the central notions from INQB carry over directly to IEL

- $\text{info}(\varphi) = \bigcup [\varphi]$
- φ is informative iff $\text{info}(\varphi) \neq \mathcal{W}$
- φ is inquisitive iff $\text{info}(\varphi) \not\models \varphi$

This brings us to the final step: adding a dynamic layer
Inquisitive dynamic epistemic logic

Language

\[p \mid \lnot \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \rightarrow \psi \mid ? \varphi \mid K_a \varphi \mid [\varphi]_a \psi \]

- Interrogative sentences
- Knowledge operators
- One speech act operator
 \[[\varphi]_a \psi = \text{‘an utterance of } \varphi \text{ by } a \text{ leads to a state supporting } \psi \text{’} \]
Discourse contexts

- Sentences will be evaluated relative to a discourse context.
- A discourse context is a pair \(\langle s, T \rangle\), where:
 - \(s\) is a state \(\Rightarrow\) representing the information that has been provided so far.
 - \(T\) is a stack of IEL-propositions \(\Rightarrow\) representing the proposals that have been made so far.
Inquisitive dynamic epistemic logic

Changing the discourse context

• Utterances change the discourse context

• $s^{\varphi_a} = \{ w \in s \mid \sigma_{a,w} \subseteq \text{info}(\varphi) \}$

• $T^{\varphi_a} = T + [\varphi]$
Inquisitive dynamic epistemic logic

Support

1. $\langle s, T \rangle \models p \iff \forall w \in s : V^c(p, w) = 1$
2. $\langle s, T \rangle \models \neg \varphi \iff \forall w \in s : \langle \{w\}, T \rangle \not\models \varphi$
3. $\langle s, T \rangle \models \varphi \land \psi \iff \langle s, T \rangle \models \varphi \text{ and } \langle s, T \rangle \models \psi$
4. $\langle s, T \rangle \models \varphi \lor \psi \iff \langle s, T \rangle \models \varphi \text{ or } \langle s, T \rangle \models \psi$
5. $\langle s, T \rangle \models \varphi \rightarrow \psi \iff \forall s' \subseteq s : \text{if } \langle s', T \rangle \models \varphi \text{ then } \langle s', T \rangle \models \psi$
6. $\langle s, T \rangle \models ?\varphi \iff \langle s, T \rangle \models \varphi \text{ or } \langle s, T \rangle \models \neg \varphi$
7. $\langle s, T \rangle \models K_a \varphi \iff \forall w \in s : \langle \sigma_{a,w}, T \rangle \models \varphi$
8. $\langle s, T \rangle \models [\varphi]_a \psi \iff \langle s^{\varphi_a}, T^{\varphi_a} \rangle \models \psi$

Note that the first seven clauses are essentially the same as in IEL
Inquisitive dynamic epistemic logic

Discussion

- IDEL brings together the main features of DEL and INQ

- Main vantage points from the viewpoint of DEL:
 - Inquisitiveness at the level of semantic content
 - Allows for a straightforward account of embedded questions

- Main vantage points from the viewpoint of INQ:
 - Perspicuous representation of the conversational participants’ epistemic states
 - Explicit account of how utterances affect the discourse context
Thank you for your attention

www.illc.uva.nl/inquisitive-semantics