The Semantics and Pragmatics of Questions

Paul Dekker, Maria Aloni and Alastair Butler

With this introduction we aim to give a sketch of the research area in which questions are studied from the perspective of a semanticist, a formal linguist interested in the notion of ‘meaning’. We start with explaining some general notions and insights in this area, and then zoom in on one of the most influential theories about questions, the partition theory of Groenendijk and Stokhof (section 1.1). In section 1.2 we concisely discuss some alternatives to the partition semantics, and some current issues in the debate about the meanings of questions, which will also pop up every now and then in the contributions to this volume. Then, in section 1.3, we have a thematic discussion of the contributions to this volume themselves, considering them one by one and in relation to each other. We end (section 1.4) with a sketch of some issues which, we think, still abide or have arisen from this volume as a whole.

1.1 General Background

1.1.1 The Notion of a Question

This volume is concerned with the formal study of questions and related topics. Questions are studied from various perspectives. From the viewpoint of a syntactician, questions are linguistic entities, sentences of a certain kind with distinctive features. They can display changes in word order, as witnessed by “Is Peter a good mathematician?” ver-
sus “Peter is a good mathematician.”; Wh-expressions, like “Who”, “What”, “Where”, “How”, etc., but also “Which students”, “Which Canadians” and the like; and in spoken language, a question normally, but not invariably, comes with rising intonation, and in written language with a question mark. The syntactic and cross-linguistic analysis of such ‘interrogative’ expressions is a matter of ongoing debate.

For a semanticist, questions are the objects which are denoted by the above described type of syntactic expressions. Here the situation is similar to the (formal) study of indicative sentences. In such a study the aim is to find a domain of denotations (propositions mostly), in the form of suitable algebras which generate logical constructions (like that of conjunction, disjunction, negation) and logical relations (like entailment, synonymy and (in-)consistency). Likewise, the study of interrogatives requires one to develop a denotational domain in terms of algebras which motivate suitable constructions like the conjunction and disjunction of questions, and logical relations like that of question entailment and answerhood. Here, too, various approaches are possible and the respective benefits and deficits of these approaches is subject to ongoing discussion.

From a pragmatic perspective, questions are basically acts in a discourse or dialogue. According to, for instance, speech act theorists, simple questions come with some propositional content (their semantics), and the question act is that of asking whether the proposition is true. As will appear from this volume, however, we can also think of questions as a type of act, without disqualifying the idea that there are questions in the semantic domain. The main question then is how the two relate, a typical question about the semantics/pragmatics interface, which is one of the main threads throughout this volume.1

From an epistemological, or if you want philosophical, perspective, questions are the things which agents can be concerned with, the questions which a person may have, also if these questions are never explicitly expressed. Judy may wonder whether or not she will be in Paris next year, and this without explicitly asking anybody. One may

1 An approach which also can be called ‘pragmatic’ or, rather, ‘practical’, is the one adopted in the areas of Artificial Intelligence where one studies question answering systems. Here questions are really queries, and the aim is to find, define and study efficient procedures for making proper queries, and especially for answering them in an automated way. Although, clearly, the aims turn out to be very similar, the type of work reported on in this volume is purely theoretical. It seeks underlying principles of language, its meaning and use, and is not (directly) concerned with computation and efficiency. We will therefore not go into further detail about this type of computational research. See Monz (2003a) for a recent overview of relevant work.
also wonder “Who am I?”, “Does God exist?”, “What is the meaning of life?”, or “How will the stockmarket develop?”, again without posing the questions, or putting them into words. This immediately raises the question whether the objects of wonder and doubt are the same as the objects which constitute the semantic denotations of interrogatives. Do they draw from the same domain?\(^2\) Maybe there are questions which one can face, but cannot put into words.\(^3\) We prefer not to settle this matter, though, but take a pragmatic (Wittgensteinian) stance on this issue, and we will henceforth talk only about questions which can be denoted by utterances, also if we talk about the objects of wonder and doubt (see Wittgenstein, 1953).

More generally, we can ask whether the four sketched perspectives on questions are concerned with different subjects, or whether they study different aspects of one and the same underlying phenomenon. Of course, the semantic study of questions most often takes the syntactic notion of an interrogative as given and as its point of departure, or, conversely, one can take interrogatives to be the syntactic means for expressing them. Furthermore, a semantic question can be taken to be raised in a discourse, and then a suitable pragmatic question is, under what circumstances is this appropriate, what are the effects of this, and what would be, under given circumstances, a (relatively) good reply. Also, it seems to be a reasonably fair assumption that questions raised in a discourse are the questions people themselves face, or wonder about. And there seems to be a case for assuming, as well, that the objects of wonder and doubt are the same as or at least very similar to the denotations of interrogative sentences. In sum, we witness at least close correspondences between the various notions of and perspectives on questions.

However, and this will become clear from various contributions to this volume, the correspondences are not always that close. It seems a ‘contemplative’ use of the indicative sentence “Peter is a good mathematician.” can be used to raise a question, while a ‘rhetorical’ use of “Is Peter a good mathematician?” typically serves to make a statement. If this is right, then we may have to re-evaluate the semantic denotations of these expressions, thereby giving up very close correspondences between either the syntactic notion of a question and a semantic one or

\(^2\)Indicative sentences raise a similar issue: are the objects of knowledge and belief the same as the denotations of indicative sentences, e.g., propositions?

\(^3\)It seems to be very hard to argue for this position, though. It would require one to come up with a question one can face but not express, but in order to come up with such a question it seems the question has to be stated, thereby rendering the argument vacuous.
between a semantic and a pragmatic one. It can also happen that
questions asked are not really the ones people actually face, even though
it can be explained that the reply to the question asked may help in
answering the question faced. I can ask “Is Judy in Paris now?”, not
because I am interested in her whereabouts, but because I am inter-
ested in those of John, who will always follow her. (And the reason
may be that I don’t want my interlocutor to know that I am interested
in John.) The reason can also be that I want to upset my interlocu-
tor pointing his nose on the fact that Judy could be there, while he
could impossibly go. Finally, it is still not excluded that the questions
people face are different from the semantic denotations of interrogative
expressions.

The upshot of this discussion is not to take a stand on the issue
whether there is one unifying or underlying concept of a question. We
mainly want to point out that something which gets described under
one label (that of a question), may turn out to be different things after
all. A more important moral is that, when the term “question” is used,
it can be quite important to realize from which perspective it is used:
does it concern something syntactic (for which we prefer to use the term
“interrogative” in what follows), or some associated abstract semantic
object, or some linguistic act, or an object of an epistemic attitude?
A phrase like “Albert’s question” can refer to either of these, and to
properly assess what is said about Albert’s question one should make
the proper choice.

This volume contains contributions on questions (and related top-
ics) from all four perspectives, although most adopt a semantic or a
pragmatic perspective, or the perspective of the semantics/pragmatics
interface. The notion of a question we reserve for the semantic denota-
tion of interrogative expressions (the syntactic notion). For the prag-
matic and epistemic notions of a question we try to systematically use
the terms “question posed” and “question faced”, respectively.

In the remainder of this section we will proceed as follows. We
start with discussing some of the classical insights in the formal study
of questions and answers (subsection 1.2), and then zoom in on the
partition semantics from Groenendijk and Stokhof (subsection 1.3).
Next, in section 1.4, we show how the partition theory can be extended
with a pragmatic component, and indeed can be motivated by it.

1.1.2 The Semantics of Questions

What is the meaning of an interrogative sentence? Maybe it is worth-
while to reconsider a similar question about indicative sentences, the
answer to which is probably more widely known. While interrogative
sentences are normally used to pose questions, and imperative sentences to issue commands, indicative sentences are normally used to convey information about the world around us. What information? That the actual world or situation is like it is said to be by the indicative, in other words, that the indicative gives a true description of that world/situation. As we will see later there is more to be said about the meaning of indicatives, but if we focus on this (crucial) aspect of meaning, then we can say that a hearer understands an indicative sentence if he knows what a world or situation should be like for the sentence to be true. As Wittgenstein (Tractatus Logico-Philosophicus, Satz 4.024) has put it:

Einen Satz verstehen, heißt, wissen was der Fall ist, wenn er wahr ist. (To understand a proposition means to know what is the case, if it is true.)

Insights like this, the roots of which can be traced back to the work of Frege, Russell and later Tarski, have invoked the slogan “Meaning equals truth conditions”, and this slogan in turn has prompted the semanticist (who aims to describe and study the meanings of sentences) to specify for every sentence of a given language under what circumstances it is or would be true.

For instance, if Muriel says, in English, “It rains.” to you, she has expressed the proposition that it rains, which is the proposition true in all and only the circumstances where it rains. By asserting it she claims that the actual world or situation is like one of those, so that if she is sincere and well-informed, and you are in the same situation, you may well conclude that it rains and take your umbrella when you go out. Of course Muriel may be wrong, she may be joking, but what counts in understanding the meaning of an indicative sentence equals understanding under which conditions it is true. These truth conditions thus can be taken to give the meaning of an indicative sentence.

A similar story can be told about interrogative sentences, be it not in terms of truth, but in terms of answerhood. Like we said, interrogative sentences are normally used to pose questions, and the purpose of posing a question normally is to get a true answer for it. So what is a true answer? Apparently this seems to be a proposition which (i) is true of the actual situation and which (ii) answers the question. Let us first focus on the second aspect. Clearly, “John came to the party yesterday.”, even if true, cannot count as an answer to the question “Did Monica ever visit Prague?” (even though sometimes it can, in pragmatically deranged situations). Proper answers are like “Yes, Monica did.” and “No, Monica never did.”. Apparently, the question dictates what
propositions count as an answer. In case of polar questions like the one we are facing here (also known as Yes/No questions), there are always two possible answers, basically “Yes.” and “No.”. However, in cases of Wh-questions, those with a Wh-phrase inside, there always are many more possible answers. Consider the question: “Who wants to join us on a trip to the beach.”. Again, “John came to the party yesterday.” does not count as a proper answer, but “Marc, Michelle and Maria want to join.” does count as an answer, as does “Nobody wants to.”. As a matter of fact, if you take the sentence frame “...want to join.” and if you fill in the dots with any list of names, you get a sentence expressing a proposition which is a possible answer. The meaning of a question can therefore be equated with a set of propositions: those that constitute an answer to the question as opposed to those that do not. And now we can come back to point (i) above. What a question solicits is not just any possible answer to the question, but a or the true answer to the question.

This time the conclusion ought to be that one knows the meaning of an interrogative sentence if one knows, given the circumstances, what counts as a true answer to that question. Since, however, this ought to be perfectly general, that is, since one should be supposed to know what would be a true answer in all possible circumstances, this means that the meaning of a question really resides in its answerhood conditions. Actually, this also expresses an age-old insight from Hamblin and Karttunen, and it has been taken up in one of the major semantic theories, like the partition semantics of Groenendijk and Stokhof discussed in the next subsection.

As an excursion, we want to point out that a similar strategy can be followed in the case of imperative sentences. The meanings of these sentences can be stated in terms of, not truth or answerhood conditions, but in terms of compliance conditions. One knows the meaning of an imperative, if one knows what has to be brought about in order to comply with the issued order. And like we can know the meaning (i.e. truth conditions) of an indicative sentence without knowing whether it is actually true or not, and like we can know the meaning (i.e. answerhood conditions) of an interrogative sentence without knowing what is actually the true answer, similarly we can know the meaning of an imperative (i.e. its compliance conditions) without knowing whether they will actually be satisfied. End of excursion.

So far the discussion has been fully general, apart from some illustrative examples drawn from natural language. A formal semanticist however wants more: proposals about the meanings of certain types of expressions should be such that one can in principle prove (or if you
want *disprove*) that certain desirable semantic consequences follow, and certain undesirable consequences don’t. For this, taking a natural language, like English, as the direct object of study is undesirable because its syntactic analyses may be unclear, and it is full of ambiguities. A very general practice in formal semantics therefore consists in defining a formal language which mimics certain phenomena from natural language in an unambiguous way, make semantic proposals for this kind of language, and study the consequences of these proposals. This is not to say that such studies are no longer about natural language—ideally they are, be it indirectly. The way in which one can put the situation is that the expressions from the formal language represent the contents or meanings of expressions from natural language, be it in an unambiguous and perspicuous way. Besides, this allows one to study certain interesting aspects of meaning by themselves, without being bothered by other (interesting) aspects of meaning, which could only complicate things if studied in tandem. For instance, as one can see in this volume and in much of the literature, tense and temporal phenomena are totally abstracted away from and the focus of many papers is on a small language of predicate logic, extended with a question operator. Not because tense is irrelevant, but because the interpretation of questions (and their answers) is the prime subject of investigation here.⁴

1.1.3 The Partition Theory
In the Groenendijk and Stokhof semantics for interrogatives (see, e.g., Groenendijk and Stokhof, 1984, 1997), questions “partition logical space”. What this means can be best illustrated by means of some pictures. Logical space is a set of logical possibilities (possible worlds, possible situations or possible circumstances). We will keep on using the term ‘possibilities’ or ‘worlds’ from now on, without being committed to a particular interpretation of these terms. Logical space can be represented as follows:

⁴As, similarly, questions hardly play a role in any known semantics of the temporal system. Notice, though, that the interplay itself between questions and tense can be very interesting, but we do not know of any literature on this.
where all the points in the rectangle should be taken to constitute the possibilities. The sentences of some formal language can be evaluated on such a logical space by means of some given valuation function which tells us, for each possibility, whether the sentence is true there, or false, like in a standard (modal) predicate logical fashion. An indicative sentence like “Andrea is in Copenhagen.” (formally: Ca) is true in some possibilities and false in others. If it is asserted, the claim is that the actual world is among the Ca-worlds, the worlds in which Andrea is in Copenhagen.

Now consider the question “Is Andrea in Copenhagen?” (formally $?Ca$). This polar question has as possible answers a positive and a negative one. The possibilities in which the answer is positive can be grouped together, and the same can be done with the possibilities in which the answer is negative, and the two groups (propositional answers) have to be distinguished. This can be displayed as follows:

\[
\begin{array}{c|c}
\neg Ca & Ca \\
\hline
?Ca &
\end{array}
\]

This picture indicates an interest in knowing on which side of the vertical line the actual world resides: are we in a Ca-world, one in which Andrea is in Copenhagen, on the right side of the line, or in a $\neg Ca$-world, where she is not there, on the left of the line. The differences between worlds on the same side of the line are immaterial to this question.

We can add the question whether Bernhard is in Copenhagen, (formally: $?Cb$). This leads to a further subdivision, this time indicated by means of a horizontal line:

\[
\begin{array}{c|c|c}
\neg Ca \land \neg Cb & Ca \land \neg Cb & \\
\hline
\neg Ca \land Cb & Ca \land Cb &
\end{array}
\]

?Ca
If we now, for the purpose of exposition, make the simplifying assumption that Andrea and Bernhard are the only relevant individuals, then the last picture is the same as the next one representing the question “Who are in Copenhagen?” (formally: \(?x \ C x \)):

\[
\begin{array}{|c|c|}
\hline
\neg \exists x \ C x & C a \land \neg C b \\
\hline
\neg C a \land C b & \forall x \ C x \\
\hline
\end{array}
\]

The basic idea about exhaustiveness, and of the partition semantics, is that Wh-questions do not ask for some possible instantiation of the Wh-term, but they want a full specification of it. That is to say, as an answer to the question “Who are in Copenhagen?” it is not sufficient to say that Andrea is, because that only tells us that the actual world is on the right of the vertical line, it does not tell us its location relative to the horizontal line, it does not tell us whether Bernhard is there or not. In that sense the mere proposition that Andrea is in Copenhagen is only a partial answer to the Wh-question.

The pictures with their dividing lines (and in general many more lines can be added) indicate what, semantically speaking, questions are according to the partition semantics. The blocks in the partitions constitute sets of propositions (the possible answers), where propositions are taken to be sets of possibilities (those where the respective propositions are true). Moreover, they cut up logical space in non-overlapping parts, which together cover the whole space. In set-theoretical terms this means that a question \(Q \) is a set of sets of possibilities such that

1. \(\bigcup Q = L \) (where \(L \) is logical space)
2. \(\forall A, B \in Q; \text{ if } A \neq B \text{ then } (A \cap B) = \emptyset \)

The first clause really says that the question has an answer in all possibilities: every possibility figures in some proposition, and the proposition in which it figures constitutes the full true answer to the question in that possibility. The second clause says that there is only one full and true answer in each possibility: if, with regard to the question, there may be a difference with another possibility, then that other possibility lives in another block, it is associated with a different answer. This is as we saw above. Even though Andrea is in Copenhagen in two possibilities \(i \) and \(j \), so that “Andrea is in Copenhagen” is true in both \(i \) and \(j \), if Bernhard is in Copenhagen in \(i \) and not in \(j \), then \(i \) and \(j \)
are in different blocks in the partition induced by the question “Who are in Copenhagen?”). So while “Andrea is there and nobody else,” “Bernhard is there but nobody else,” and “Andrea and Bernhard are there,” express three mutually exclusive propositions (three of the four possible answers to our question “Who is there?”), the answers “Andrea is there,” and “Bernhard is there,” are not mutually exclusive, and therefore not full answers to the question.

An exhaustive notion of a possible answer, as it can be modeled by partitions, turns out to be logically, empirically, and also pragmatically very well behaved. The last two benefits will be discussed in more detail in subsequent subsections. We want to end this subsection with a concise discussion of its logical benefits.

It is generally known that partitions are defined by equivalence relations. An equivalence relation on some set is reflexive, transitive and symmetric. It is easily seen that if a relation relates all elements which belong to the same block in a partition, and no element with any element residing in another block, then that relation is reflexive, transitive and symmetric, i.e., we have an equivalence relation. Conversely, if we have an equivalence relation over some set or space, then it induces a partition which puts related elements in one block, and no other ones. Since the relation is reflexive, transitive, and symmetric, all elements (possibilities) figure in at least one block, and no possibility figures in more than one, hence it is a partition.\footnote{Formally, if \(Q \) is a question, then the induced equivalence \(R_Q = \{ (i, j) \mid \exists A \in Q: i \in A \land j \in A \} \); furthermore, if \(R \) is an equivalence relation, then the corresponding partition \(Q_R = \{ \{ j \mid (i, j) \in R \} \mid i \in \mathcal{L} \} \setminus \emptyset \). Exercise: prove that \(R_Q \) is an equivalence relation, that \(Q_R \) is a partition, and that \(Q_{R_Q} = Q \).}

The formulation of a question in terms of an equivalence relation can be understood as follows: the question is insensitive to the difference between any two related possibilities, because for the ‘purpose’ of the question they are ‘equivalent’, in a rather literal sense. The question is, however, sensitive to the difference between two (or more) sets of mutually unrelated possibilities, because that is what the question boils down to: in which of the two (or more) sets does the actual world reside?

When questions are formulated as equivalence relations, we get a neat notion of question conjunction and question entailment in return. Conjunction is intersection and entailment comes down to the subset-relation in all possible models. Very standard Boolean relations thus apply to the logic of interrogatives as well. Let us expand a little bit on this before we proceed to the next subsection.

We sketched above that if we started with the question whether Andrea is in Copenhagen (which induced a bi-partition, a division in
two blocks), we could add the question whether Bernhard is there (another bi-partition). Multiplication of the two questions led to a four-way division as we have seen, and in general if we multiply any two independent questions, we get the product number of possible answers as a result. This is exactly what intersection of the corresponding equivalence relations gives us. (It is a very good exercise for the reader unfamiliar with this material to make this formally explicit and then prove this claim to be true.)

As for entailment, if we have two questions \(Q \) and \(\mathcal{R} \), and if we look at the corresponding equivalence relations \(R_Q \) and \(R_{\mathcal{R}} \), then \(Q \) entails \(\mathcal{R} \) iff \(R_Q \subseteq R_{\mathcal{R}} \). In terms of partitions this boils down to the requirement that every block in \(Q \) is a subset of a block in \(\mathcal{R} \), so every possible full answer to \(Q \) entails a possible full answer to \(\mathcal{R} \). In terms of the examples we discussed, \(?Ca \land ?Cb \) entails \(?Ca\) because any full answer to the first entails a full answer to the second, and, likewise, \(?x \ Cx \) entails \(?Cz\), for any \(z \), since if we have a full specification of the persons who are in Copenhagen, we automatically know whether \(z \) is there, for any arbitrary \(z \). In Groenendijk (1999) the very same entailment relation (specified in terms of the subset-relation) automatically generalizes to a few other cases, but before we can come to that, we have to address a couple of other issues in the theory of questions and answers.

1.1.4 The Pragmatics of Questions

The partition semantics can be extended naturally when it comes to the use of questions, thereby making the whole framework much more sophisticated and of wider application. Besides, the pragmatics of questions can also be taken to motivate the partition semantics. In this subsection we will discuss some issues pertaining to the pragmatics of questions in discourse, as well as some subtle and instructive snags.

It is generally acknowledged that utterances (assertions, questions, etc.) are never or hardly ever evaluated against an empty background. Language is always used against a background of common knowledge or belief, private knowledge and belief, and information the interlocutors have about the information of others. Groenendijk and Stokhof already acknowledged this in their 1984 dissertation, and developed a notion of a ‘pragmatic answer’.

Consider the following picture, the same as the one for \(?x \ Cx\), but now with an additional oval (labeled \(I \)) which represents the current state of information:
The oval \mathcal{I} must be understood as indicating that the actual world is assumed to be inside of it, and that all possibilities outside the oval have been dismissed as being non-actual. (It may be important to realize that, maybe, they have been dismissed mistakenly, we will come back to this below.) The above picture indicates that, while the semantic question cuts up logical space into four big blocks, it is the division of the oval into four parts that is pragmatically relevant (since everything outside the oval is deemed non-actual, and therefore irrelevant). This means, however, that a question different from $?x \ C x$ might do the very same job, pragmatically speaking. Consider the next picture with a possible alternative question $?x \ D x$:

Notice first, that the two questions are logically independent. For instance, the answer $\neg \exists x C x$ to the first question does not entail (is not included in) any answer to the second question, and the answer $Da \land \neg Db$ to the second does not entail (is not included in) any answer to the first. So, semantically, there is no entailment relation between the two questions. However, inside the oval the two questions coincide, so pragmatically speaking, against the background \mathcal{I}, the questions are equivalent. It is important to note, though, that \mathcal{I} after all might not include the actual world, and then the difference between the two questions becomes important. For the actual world might be one in which both $\neg \exists x C x$ and $Da \land Db$; in that case the two propositions are (true) answers to the respective questions, but a person who believes to be in
I would feel licensed to draw two totally different conclusions.

With semantic and pragmatic notions of answerhood at hand, Groenendijk and Stokhof (1984) developed various notions of what is a better answer to a question relative to some background information \(I \). We will not discuss these here but refer the reader to the original dissertation and papers.

Let us now start from the pragmatic perspective and see how it can be seen to motivate a partition-style semantics. Robert van Rooij has shown that basic concepts from decision theory, in particular the concept of a decision problem, closely relate to such partitions (see, e.g. van Rooij, 2003). An agent who wants to eat in a Thai restaurant may face a decision problem, namely where to go? Let us assume she is at a junction, where she could take four directions: northwest \((nw)\), northeast \((ne)\), southwest \((sw)\), and southeast \((se)\). Let us assume as well that she has information that there is exactly one Thai restaurant, to be found in one of these directions, but that she has no information about in which direction it is. She could try all directions in some random order but that is quite troublesome. She could also ask some passer-by for the direction to the restaurant, something displayed by the following picture:

A full and hopefully true answer to her question would directly help to solve her decision problem: if the restaurant is to be found direction northeast, then that’s the way to go. A partial answer, like “Northeast or southwest.” however, would not help her out. Of course, she could skip considering northwest and southeast, but she still would not know where to go. This example shows that if one has to make a choice, where only one choice can or should be made among alternatives, then a very appropriate thing to do is to pose a question in which every possible answer corresponds to exactly one possible choice, that is, given the background information.\(^6\) van Rooij (2003) has not only spotted this

\(^6\) Nothing here excludes, of course, the posing of questions just for purposes like ‘simply wanting to know’, ‘curiosity’, or for ‘keeping the conversation going’, and
kind of formal correspondence between notions of decision theory and the partition semantics, but he has also worked out decision theoretic notions for comparing the relevance of questions and that of answers.7

In the previous paragraph we deliberately emphasized the clause \textit{given the background information}, because this brings up two subtle points with which we want to end this section.

Let us go back to a simplified situation in which two interlocutors are facing two sets of apples: red ones and green ones. One of them wants to buy one group but doesn’t know which, so she asks:

(1) Do the red ones taste better?
 (Which apples taste better, the red ones or the green ones?)

The situation can be displayed as follows:

\[
\begin{array}{c|c}
\neg p & p \\
\hline
\neg p & \neg p \\
\hline
p & p \\
\hline
\end{array}
\]

Where p is short for “The red ones taste better.”. Again, the question cuts up logical space in two parts, and also the information set \mathcal{I}. If the actual world happens to be a $\neg p$ world then one might choose to buy the green apples, the red apples otherwise. However, our agent has mistaken information, since the actual world, indicated by the little arrow, lies outside her information set, her information excludes the (possibility corresponding to the) actual world, which means that she has got some mistaken beliefs. One mistaken belief may be that the apples are real, whereas, actually, they are fake. Now the interlocutor may realize this, and come up with the full and true semantic answer $\neg p$, corresponding to the statement that the green (fake) apples taste better than the red (fake) ones. (For, the actual world here resides in the $\neg p$ block.) However, realizing our questioner’s mistake, and realizing for what purpose she might want to buy the apples, he’d better explain the mistake and reply that all the apples are fake.

7Actually, van Rooij treats plain questions and embedded questions alike in a so-called underspecified way, which allows various exhaustive, partial and scalar readings depending on the contextually given relevance ordering.
What this example teaches us is that we have to carefully distinguish the semantic and the pragmatic question posed, and that it makes sense, if we look at the pragmatics of questions, to consider the reason or relevance of asking a question, taking into account possibly mistaken information in the information set of the questioner. It moreover shows once more, that pragmatically speaking, questions are in a sense conditional on the assumption that the background information is correct. So here we witness another example where the question faced and the question posed, unbeknownst to the questioner, depart.

That questions can be conditional on background information can also be made explicit, and this can also be motivated from a choice- or decision-making perspective. Suppose I am in doubt whether or not to go to the party tonight. The presence of a certain constellation of guests might make it attractive for me, whereas other constellations might put me off. So, in order to make a good decision I may ask “Who comes to the party tonight?” But now the answerer may face a problem, because a full answer would have to include me or not, and since I have not yet decided, he cannot know. Besides, the decision of others to come to the party may as well depend on their expectation of me being there. So an appropriate answer could be: “Well, if you decide to go, then so-and-so will be there.” A most probably inappropriate answer would be “Well, if you don’t go, then so-and-so will be there.”

My question thus is understood in a conditional way, and I might as well have asked directly: “If I go the party, then who will be there as well?” This question asks for a specification of those present and absent in the case where I go, and asks nothing about the cases in which I don’t go. It turns out that the interpretation of such conditional questions can be elegantly modeled, but at the cost of giving up true partitions in favour of so-called ‘pseudo-partitions’: zooming in on the set of possibilities in which I go, we find a true partition, but none of these is distinguished from any of the possibilities in which I don’t go.\footnote{Velissarotou (2000) has elaborated such an analysis for conditional questions. Questions like “If Felix goes to Paris, then who will do the household?” partition the set of possibilities with Felix in Paris, but don’t distinguish them from those in which Felix is not, since the very conditional antecedent makes these possibilities irrelevant. We refer to Velissarotou (2000) and Dekker (2004) for a more detailed investigation.}

1.2 Current Issues

There are a couple of issues which plague the literature on the semantics of questions, and in this section we take a brief look at four of them.
Three of them—the topics of exhaustification, structured meanings and dynamic interpretation—play a notable role in the contributions to this volume, and while the fourth on “knowing who” does not, it is certainly worth addressing here, because it will definitely play a role in future extensions of the proposals made in this volume.

1.2.1 Exhaustification

The first issue concerns the idea that the meanings of questions are exhaustive. Before we can make this precise, it is expedient to make the question language precise. Like we said, the language is that of predicate logic, extended with a question operator. The formulas of predicate logic will also be referred to as indicatives, and if ϕ is an indicative, and \vec{x} a (possibly empty) sequence of variables x_1, \ldots, x_n, then $?\vec{x}\phi$ is an interrogative.

The question operator $?\vec{x}$ queries the possible values of the variables \vec{x} under which the embedded formula ϕ is true. In case \vec{x} is empty, $?\vec{x}\phi$ is a polar question, (a yes/no question). If \vec{x} consists of one variable x only, as in $?x Cx$ (“Who comes?”), it asks for the extension of C; if $\vec{x} = xy$ consists of two variables, as in $?xy (Bx \land (Gy \land S_{xy}))$ (“Which boys saw which girls?”), it asks for the set of pairs consisting of a boy and a girl the boy saw.

Groenendijk and Stokhof’s semantics of questions, which is quite similar to that of Higginbotham and May (1981), Higginbotham (1996), can be specified as follows, relative to a model of modal predicate logic $M = \langle W, D, I \rangle$, where W is a set of possibilities, D a domain of individuals, and I an interpretation function for the individual and relational constants in each possibility. For the interpretation of free variables we use the usual assignments g of values from D to variables as a parameter. By $g’[\vec{x}]g$ we mean that assignment $g’$ which is like g except (possibly) for the values it assigns to the variables \vec{x}:

- $[?\vec{x}\phi]_{M,g} = \{ w’ | \forall g'[\vec{x}]g. [\phi]_{M,w’,g’} = [\phi]_{M,w,g} \} | w \in W \}$

Relative to some world w, a question denotes the full and true answer to the question. It is a proposition true in exactly those possibilities where exactly the same valuations of the variables \vec{x} render ϕ true, respectively false. If \vec{x} is the empty sequence, then relative to some world w this boils down to the set of possibilities $\{ w’ | [\phi]_{M,w’,g} = [\phi]_{M,w,g} \}$, which is the set of worlds $w’$ where ϕ has the same truth values as in w. So this is the proposition that ϕ if ϕ is true in w, and the proposition that not ϕ, if ϕ is false in w. If \vec{x} is non-empty, things get more interesting. Consider $?x Cx$ (“Who comes?”) relative to w. Some calculations show that this denotes the proposition true in exactly those worlds $w’$ where
the denotation of C is the same as in w. If n_1,\ldots,n_j is an enumeration of all and only the people who come in w, then the full and true answer is the proposition that n_1,\ldots,n_j come and nobody else. Here we see what is exhaustive about this semantics: it requires a full specification of the possible values of the queried variables, and a closure statement stating that this is indeed the full set of possible values. In general we see that indeed the meaning of a question is a set of propositions. Each world is associated with one full possible answer, and as it so happens it partitions logical space: in each world there is only one full and true answer, and worlds in which this answer is the same are grouped together and they are distinguished from worlds where the answer is different.

Earlier treatments of questions by Hamblin (1973) and Karttunen (1977) are also based on the idea that the meaning of an interrogative resides in its answerhood conditions. They differ, however, in the way they spell this out, namely in a non-exhaustive way. For completeness, let us consider Hamblin’s semantics for interrogatives, slightly adapted to the present format (by $g[\vec{x}/\bar{c}]$ we mean the assignment which is like g except that it assigns \bar{c} to \vec{x}:

$$\text{• } [?\vec{x} \phi]_{M,g} = \{w' \mid [\phi]_{M,w',g[\vec{x}/\bar{c}] = 1} \mid \bar{c} \in D^*\}$$

In this definition \bar{c} is assumed to be any sequence of individuals with the same length as that of the sequence \vec{x} of variables queried. Again the meaning of an interrogative is specified as a set of propositions (possible answers), but its relation to the question is quite different from that of Groenendijk and Stokhof (and Higginbotham). The main difference is that the possible answers are not (meant to be) exhaustive.

Consider $?x \ Cx$ (“Who comes?”). Some calculations show that the possible answers according to the last definition are the propositions that d comes, for any individual in the domain, i.e., the proposition that Marc comes, the proposition that Muriel comes, etc., this for any entity in the domain. Or consider $?xy(Bx \land (Gy \land Sxy))$ (“Which boys saw which girls?”). This time the answering propositions are taken to be that Marc saw Muriel, that Menno saw Mathilde, etc., for any pair (d,d') where d is a boy and d' a girl. In case \vec{x} is the empty sequence as in $?p$ (“Does it rain?”) there is only one possible answer: p (“That it rains.”).

The latter definition can be modified somewhat, in that, relative to some possibility, we only select the possible answers true in that possibility, and we can take the conjunction of all true answers in a possibility, thereby generating something like an exhaustive specification. The underlying ideas are different, though.
One advantage of the exhaustive approach to question meanings is that it automatically comes with a straightforward logic of interrogatives and that it also neatly fits in with pragmatic and decision-theoretic approaches to natural language (as seen in the previous section). It is not so obvious whether the same points can be made in favour of the non-exhaustive approaches.

Besides, as Groenendijk and Stokhof rightly argue, their (exhaustive) semantics of unembedded interrogatives directly applies to embedded interrogatives. Consider:

(2) Marc knows who come.
(3) Muriel wonders who come.

Example (2) can be taken to express that there is a true answer to the question “Who comes?” and even though the speaker may fail to know the answer, she expresses that Marc knows it. Intuitively, this is not just a singular proposition of the form “Menno comes,” which Marc is said to know; rather it says that, relative to a domain of relevant individuals, Marc knows of each of them whether he or she comes or not — indeed the exhaustive interpretation. And in example (3), Muriel is not said to be concerned with the truth or falsity of a singular proposition of the form “Judy will come.”, but with a set of exhaustive propositions possibly answering the question “Who comes?”, and trying to figure out which of these is the actually true answer. In both cases, the exhaustive interpretation of the embedded interrogative seems to be the right object of knowledge and wonder (see Heim, 1994).

So far, the odds seem to favour the exhaustive interpretation of interrogatives. However, one type of example may speak in favour of non-exhaustive interpretations, questions with so-called ‘mention some’ readings. Typical examples include:

(4) Who’s got a light?
(5) How can I get to the station?
(6) Where can I buy an Italian newspaper?

These type of questions are normally (not invariably!) used to ask for one verifying instance only. If I have found someone who has a light, I don’t care about who else has got one. If one asks the road to the station, one is not assumed to be interested in the infinite number of ways one could get there. And if I want to buy an Italian newspaper, one close enough place suffices, and a specification of all places around town where you can buy one seems pedantically superfluous.

There is a lot of literature on this subject. Do interrogatives have two types of meanings? Are they ambiguous? Or can we derive one of them from the other? We will not go into a discussion of these matters
here, since the subject will return in more empirical detail in the next
section and in the contributions to this volume themselves.

1.2.2 Structured Meanings
An approach to the semantics of interrogatives which seems to be more
radically different from the ones above, is the so-called ‘categorical’ or
‘structured meanings’ approach (von Stechow, 1991, Krifka, 2001, e.g.).
This type of approach also seeks the key to the meaning of interrogatives in terms of their possible answers, but it does not take proposi-
tional answers (answerhood conditions) as the fundamental notion, but
constituent answers.

The main idea is that questions basically are functions, and that
their possible answers supply the arguments to these functions in order
to yield a proposition. Consider the examples from above again, this
time as they are formulated in the structured meanings framework:

(7) Who comes? (\(\lambda x\) Cx)\(^9\)
Marc. ((\(\lambda x\) Cx)(m) \(\iff\) Cm)

(8) Which boys saw which girls? (\(\lambda (x, y)\) Sxy)
Marc Judy. ((\(\lambda (x, y)\) Sxy)(\(\langle m, j \rangle \)) \(\iff\) Smj)

(9) Does it rain? (\(\lambda f\) f(r))
No. ((\(\lambda f\) f(r))(\(\lambda p\) \(\neg\)p) \(\iff\) (\(\lambda p\) \(\neg\)p)(r) \(\iff\) \(\neg\)r)

If we take sentences to denote propositions, then every interrogative
denotes a function from answer-type denotations to propositions. If the
interrogative hosts Wh-elements, as in the examples (7) and (8), then
the required answer types are those of the (tuples of) Wh-elements. In
case of a polar question (9), the argument type is a function on the
domain of propositions, basically “Yes.” (\(\lambda p\) p) and “No.” (\(\lambda p\) \(\neg\)p).

It is relatively easily seen that the structured meanings interpreta-
tion of interrogatives is strictly richer than its propositional counter-
part. For we can derive the latter from the former (but not the other way
around):

• Let \(S\) be the structured meanings interpretation of an interro-
gative; then the corresponding propositional interpretation
\[Q_S = \{ \{w' \mid \forall \vec{v} \in \mathcal{D}^*: \ w' \in S(\vec{v}) \iff w \in S(\vec{v})\} \mid w \in \mathcal{W}\}\]

\(^9\)Just for completeness, if \(x\) is a variable of type \(a\), and \(\beta\) an expression of type \(b\),
then \(\lambda x\) \(\beta\) is an expression of type \(\langle a, b \rangle\) with interpretation: \(\lambda x\) \(\beta\)\(_{M, \mathcal{G}}\) = that func-
tion \(h\) from \(a\)-type things to \(b\)-type things such that \forall d \in D_a: h(d) = \(\beta\)\(_{M, \mathcal{G}[\alpha/d]}\). As we can see in the next example, we can also abstract over tuples of variables, and
apply these abstracts to tuples of arguments. As is well-known (\(\lambda x\) \(\beta\)(\(\alpha\)) \(\iff\) \(\alpha / x\) \(\beta\),
provided that no free variables in \(\alpha\) get bound by the substitution for \(x\) in \(\beta\) (\(\lambda\)-
conversion).
This fact indicates that anything that can be done on the propositional approach can be done on the structured meanings approach as well, in an indirect way. This comes at a price, though. In the first place a structured meanings account must assume that questions and their characteristic answers live in many categories: in principle they can be functions of any type of arguments to propositions. Furthermore, question-embedding verbs like “wonder” and “know” (as in “know who”, “know whether” etc.) cannot directly apply to the meanings of their embedded arguments, because their structured meanings interpretation first has to be recast into their propositional interpretation.

It must be said, however, that this price is not paid for nothing. As we can see from the examples (7–9), a structured meanings interpretation of interrogatives gives us a direct means to interpret (non-propositional) constituent answers: the function associated with the interrogative simply applies to the interpretation of the argument and the result is the propositional answer (which can be true or false by the way). Things are not that easy on a propositional approach. First notice that on a propositional (partition) approach, the following questions are pairwise equivalent:

(10) Is it raining?
 Is it not raining?

(11) Who wants an ice cream?
 Who does not want an ice cream? \(^{10}\)

Every full answer to the first question of these pairs also fully answers the second, intuitively, and formally. However, an affirmative reply (“Yes.”) to the first question of (10) implies that it is raining whereas as a reply to the second question of (10) it implies that it is not raining. \(^{11}\) The examples in (11) are probably clearer. A constituent answer like “Judy.” to the first of these questions means that Judy wants an ice cream, while if it answers the second question it means that Judy does not want one.

These observations imply that partition interpretations of interrogatives are not rich enough to (directly) interpret corresponding constituent answers, so that other means have to be looked for. One way to go is to assume that constituent answers are elliptic, and that a reply like “Judy.” is really short for, for instance, “Judy [does not want an ice cream].”, where the material in brackets has been elided and

\(^{10}\) This pair of examples is from Zeevat, p.c.

\(^{11}\) One has to be cautious here, though, because it seems we could answer the second question with “Yes, it is raining.”, “Yes, it is not raining.”, “No it is raining.” and “No, it is not raining.” Whatever the rules are, it is certain that languages differ with respect to the ways in which negative questions get answered.
must be reconstructed on a syntactic level. Groenendijk and Stokhof argue for a semantic approach. They resort to a previous or deeper level of the interpretation of interrogatives, where questions are associated with relational abstracts, which are very much like the functions from the structured meanings approach. These relational abstracts lie at the basis of the derived partitions, but they can be re-used when it comes to the interpretation of constituent answers, very much in the same way as these are interpreted on the structured meanings approach. But if these relational abstracts are indeed semantically relevant, then the propositional and the structured meanings account of questions and answers are not that wide apart after all.

Quite a reverse story, of course, has to be told about full propositional answers. A reply “Marc and Judy want an ice-cream (and nobody else).” to the first question of example (11) can be directly interpreted on the partition approach as it selects one block from the partition associated with the question. In order for the structured meanings approach to deal with such a reply it seems it must first turn the question function into the corresponding partition (as defined above) before it can interpret the reply in a similar way.

We leave this discussion here, since the issues involved will show up again in some of the contributions to this volume, and in our discussion of them in section 3.

1.2.3 Knowing Who and Which

There are two more or less technical issues which any theory of questions has to face, but which are best explained in terms of the most rigorously formulated partition theory, the solutions of which seem to carry over to the other frameworks.

In the models $M = (W, D, I)$ for the partition semantics, names or individual constants are assumed to be ‘rigid designators’, i.e., they denote the same individual in every possibility.\footnote{Formally, $\forall w, w': I_w(c) = I_{w'}(c)$, for any individual constant c.} This is enforced for a good reason. In this way, a reply like “Judy comes (and nobody else).” counts as a good full possible answer to the question “Who comes?” Let us see this by computing the possible answers to this question relative to an arbitrary variable assignment g:

- $\{ w' \mid \forall g'[x]: [C'x]_{M, w', g'} = [C'x]_{M, w, g} \mid w \in W \} = \{ w' \mid \forall d \in D: [C'x]_{M, w', g[x/d]} = [C'x]_{M, w, g[x/d]} \mid w \in W \} = \{ w' \mid I_{w'}(C) = I_w(C) \} \mid w \in W$.

The above mentioned reply denotes the following proposition:
• \{w' \mid \forall d \in D: d \in I_{w'}(C) \ \text{iff} \ d = I_{w'}(j)\} = \\
\{w' \mid I_{w'}(C) = \{I_{w'}(j)\}\}

Clearly, if "Judy" is rigid, say \(I_w(j) = d\) for any possibility \(w\), this is one of the full possible answers, namely the proposition true in those \(w'\) such that \(I_{w'}(C) = \{d\}\). If, however, "Judy" were not rigid, the reply would not correspond to any of the possible answers to our question.

The above example shows that there are good reasons for a rigid interpretation of names, or individual constants. However, it has a pretty nasty by-effect. Consider the question "Who is Judy?" (?\(x \ x = j\)), on the assumption that "Judy" is rigid, say \(I_w(j) = d\) for any possibility \(w\):

• \{\{w' \mid \forall g'[x]g': [x = j]_{M,w',g'} = [x = j]_{M,w,g'}\} \mid w \in W\} = \\
\{\{w' \mid \forall d' \in D: [x = j]_{M,w',g'[x/d']} = [x = j]_{M,w,g'[x/d']}\} \mid w \in W\} = \\
\{\{w' \mid \forall d' \in D: d' = d \ \text{iff} \ d' = d\} \mid w \in W\} = \\
\{W\}

The question turns out to be trivial. It has only one possible answer, which is the trivial proposition, true in all possible worlds. This means that any answer to any question whatsoever entails (is included in) the one and only answer to this question. Obviously, this is not what we want, because we can ask such questions like "Who is Judy?" in a non-trivial way, and we can make contingent assertions like "Marc knows who Judy is." and "Bernhard does not know who Judy is.". If "Judy" is interpreted rigidly this has to remain inexplicable. Indeed, we face a dilemma, as Aloni (2001) has it: either we make "Judy," a proper answer to a Wh-question, but then asking who Judy is becomes trivial. Or we try and make sense of questions like "Who is Judy?" but then we cannot properly use the name in a reply to a constituent question. We cannot have it both ways, it seems.

Aloni (2001) has shown a way out of this dilemma, with a technique she has also shown to be very useful for the analysis of attitude reports and epistemic operators in dynamic semantics. It would go too far to give the details of her analysis here, so we will only sketch the outlines. The basic idea is that even though quantification and reference are concerned with the domain of individuals, this concern is modeled from the perspective of a conceptual cover, a way of ‘seeing’ the domain.

We can assume names to be non-rigid, i.e., they are individual concepts, functions which assign a, possibly different, individual to each possibility as the referent of the name. (This can be taken as the default interpretation of names in an epistemically oriented semantics.) Under ideal circumstances, the set of (interpretations of) names constitutes
a conceptual cover, in the sense that each individual is named once in each possibility. Another conceptual cover is the domain itself, as, for instance, when we are in direct perceptual contact with the whole domain. Many other ways of ‘seeing’ the domain are possible, though.

The main technical contribution is that quantifiers (and variable-binding question operators) are also interpreted relative to specific conceptual covers. The net effect is that if the question operator in \(?x\ x = j \) is interpreted from a ‘naming’ cover, then indeed the question is trivial: it is as if it asks “Who among Marc, Judy, \ldots, and Muriel is Judy?”’, which is quite silly indeed. However, if the question operator is interpreted from another perspective the question is not at all trivial any longer. For instance, if you have a list of the names of the soccer players, about whom you know quite a bit from the newspapers, and if you see all of the players on the field, it is quite legitimate to ask which of the persons you see there on the field is this player so-and-so on your list. This is neatly accounted for in Aloni’s semantics.

Moreover, if the perspective associated with a question \(?x\ Cx \) is that of a ‘naming’ cover, then any list of names will constitute a proper answer, as we would like to have it in the first place. Interestingly, this approach also explains why the very same answer to the very same question can be appropriate or inappropriate depending on the circumstances, more in particular, on the assumed perspective. Thus, to adapt an example from Aloni, a teacher can ask in the classroom:

(12) Do you know who Sandra Roelofs is?

A proper answer in this situation seems to be something like “The Dutch wife of the Georgian president Mikhail Saakashvili.”. However, if you are at a party where Sandra Roelofs is known to be present, and if you want to ask her to open the next Tbilisi symposium, then the very same reply to the very same question does not make much sense. Rather, you would expect or hope your interlocutor to point out one of the visibly present individuals. (And conversely, indeed, your teacher in classroom would not be very happy if, in response to her question, you would go out, kidnap Sandra Roelofs, bring her to the classroom and say, “This is Sandra Roelofs.”.) With Aloni’s conceptual covers, these data can be neatly accounted for, independent of the general framework used to deal with the interpretation of questions.

Another issue has to do with which-questions. A relatively ‘flat’ rendering of “Which boys saw which girls?” (slightly different from the one we implicitly assumed above) looks as follows: \(?xy\ (Bx \land (Gy \land Sxy)) \). This is slightly non-compositional, since, for instance, we cannot really isolate a part corresponding to the phrase “which girls”, but
with some ingenuity the analysis can be amended at this point. Somewhat more worrying is the fact that the contents of the *which*-phrases and what is predicated of or questioned about their interpretations is treated on equal par. The following pairs of examples may show that we need to be more distinctive:

13. Which males are bachelor?
 Which bachelors are male?
14. Judy knows which males are bachelor.
 Judy knows which bachelors are male.

According to the ‘flat’ analysis, the questions in examples (13) are analysed as $?x (Mx \land Bx)$ and $?x (Bx \land Mx)$, which are obviously equivalent. They both ask for a full specification of the male bachelors, i.e., of the bachelors, according to the lexical meaning of that term in English (‘bachelor’ = ‘unmarried male’). By the same token, the embedded questions in examples (14) would be the same, so both sentences ought to be equivalent as well. Intuitively, however, these equivalences do not hold: the first question of (13) makes (contingent) sense, whereas the second does not seem to. An obvious reply is, for instance: “Well, all of course!” For the same reason the first statement of (14) can be of interest, while the second need not be.

There is a principled way out of this problem, corresponding to the analysis of *which*-phrases on Krifka’s structured meanings approach. According to Krifka (2001), the first question of (13) is a function from individuals to propositions to the effect that the individuals are bachelor. It is a partial function, though, restricted to the set of males. This function is non-trivial because some of the males may be bachelor, and others may not be. A similar analysis of the second question of (13) shows it to be trivial. It is a function from individuals to propositions to the effect that the individuals are male. Since this time the partial function is restricted to the set of bachelors, the question is trivial: all of them are male, of course. Quite the same idea can be used to explain the contrast between the two sentences in (14).

Krifka’s 2001 analysis can be generalized, and exported to other frameworks for the analysis of questions, because it appears to be an instance of a much wider phenomenon in natural language. It has been argued every now and then in the literature that quantified noun phrases in a sense presuppose their domain of quantification. (This idea is as old as Aristotle, and in the linguistics literature it has been argued for convincingly by Milsark (1974) and Diesing (1992), and recently Moltmann (to appear).) If we apply the same idea to *which*-noun phrases the facts seem to fall right into place.
Consider again “Which males are bachelor?” According to the previous suggestions this implies that the domain of males is given, or under discussion, and that it asks for a distinction in that domain between the ones that are and those that are not bachelor. This makes intuitive sense, of course. Conversely, “Which bachelors are male?” implies that we are talking about the domain of bachelors, and questions which of them are male and which are not. Given the assumptions about bachelors previously stated, this question is indeed trivial, since all the bachelors are, by definition, known to be male.

We will not go into further detail on this issue here, because the proper treatment of presuppositions, and especially that of domain presuppositions, is a matter of current debate. The discussion here was mainly meant to show that a quite puzzling question around the interpretation of which-questions can, and probably should be, resolved by means of an independently needed treatment of the presuppositions of noun phrases more generally, which, at present, is outstanding.

1.2.4 Dynamic Semantics

One can, but need not, agree that the meaning of a sentence resides in its so-called ‘update potential’, contrary to the view exposed above that it resides in its ‘truth conditions’. Even if one does not, it has proven worthwhile to study how assertions change or are intended to change the context: ‘common grounds’, representations of the contents of discourses, the information of the interlocutors, or what have you (Stalnaker 1978, Kamp 1981, Heim 1983a, Seuren 1985, Groenendijk and Stokhof 1991a, Veltman 1996). As will appear from the contributions to this volume, and as has earlier been shown in different types of frameworks (like those of Roberts (1996), Hulstijn (1997), Asher and Lascarides (1998), Cooper (1998), Ginzburg and Sag (2000)), basically the same holds for questions in discourse.

Whether or not one accepts the view that meanings are context change potentials, it is beyond doubt that the semantics/pragmatics interface cannot ignore the question how utterances depend on, and can be taken to modify, the ‘common ground’. In this respect interrogatives, like imperatives and permission utterances, are much more convincing examples than simple assertions are. Discourses or dialogues which are aimed at the exchange of information can be seen as games of stacking and answering ‘questions under discussion’ (Ginzburg, 1995) or as processes of ‘raising and resolving issues’ (Hulstijn, 1997). Such processes are not un-structured: they are governed by structural rules which can be deemed linguistic (in a broad sense), and by very pragmatic principles of reasonable or rational coordination. Especially by adopting a
dynamic view of interpretation, one is able to lay bare such systematic properties and effects of questions and assertions in practice.

From the very start, there have been two closely related approaches to the dynamics of discourse, a representational and a non-representational one. Hans Kamp’s discourse representation theory (Kamp 1981, as well as its successors like, e.g., UDRT, Reyle 1993, SDRT, Asher and Lascarides 2003) is of the first type, which, as its name indicates, aims to represent the cumulative contents of discourses. Amsterdam formulations of the dynamics of discourse are, arguably, of a non-representational nature (Jeroen Groenendijk and Martin Stokhof’s dynamic predicate logic and Frank Voltman’s update semantics). Irene Heim’s file change semantics is a perfect blend: it employs a representational metaphor (that of updating ‘files’) while it also comes with a non-representational semantics for these updates. It is, of course, obvious, that a representational semantics is a much more powerful tool than a non-representational one, since many more operations are conceivable on highly structured representations, than on the less structured semantic objects. Nevertheless, it seems to be worthwhile to see how far the scope of a non-representational semantics can be stretched. For the latter does not commit itself to the reality or form of the representations people actually use when computing meanings and interpretations. Any cognitive theory of interpretation ought to be in principle compatible with its findings. Such a point can hardly be upheld for a representational semantics, since if it turns out that the representations used would not be realistic in a psychological or cognitive sense, in a way this would refute the theory.

All contributions to this volume adopt this non-representational stance. Information (of the interlocutors or in the common ground) is generally modeled in terms of sets of possibilities, viz., those which are compatible with that information. Update of information consists of the elimination of possibilities. If we know or learn more, less possibilities turn out to be compatible with the information we have, and in the extreme case we could be left with only one possibility, totally specifying what (we think) exactly are the ways things are Roberts (1996). Of course, hardly anybody would like to achieve this goal. (Except, if he exists, God, who would know this by definition.) Since we are agents with practical needs and finite capabilities, we are confronted with only very limited subsets of the infinite sets of questions we could raise, and therefore updates in discourse should be guided by the questions we have, we actually pose, or which others may think we might be interested in.

Here is where Hulstijn’s 1997 ‘raising and resolving issues’ kicks
in, and, likewise, the ‘questions under discussion’ from Ginzburg (1995), Roberts (1996). At any point in a discourse or dialogue several questions may be ‘alive’ because they are ex- or implicitly raised, or assumed to be relevant. In order to account for such a state in discourse, we therefore cannot simply do with the set of possibilities compatible with the information assumed and exchanged so far. It should also indicate the relevant differences which the interlocutors wish to distinguish between. Information states or common grounds therefore ought to be (at least) sets of ordered possibilities, for instance partitions of parts of logical space. As in Groenendijk and Jäger’s papers, these states can be updated in basically two ways. Assertions can be used to reduce the relevant part of logical space by the elimination of possibilities, as no longer being potentially actual. Questions can be used to fine-tune the structure, and increase the number of distinctions one is interested in. From this very sketchy description we can already deduce two general and reasonable constraints (which are not inviolable, though, as we will see later). For instance, it should make no sense to assert something which is already entailed by the common ground at a certain point in a discourse; and it ought not to make sense to ask a question which is entailed by previous questions in the discourse. Much more detail will be provided in the various contributions to this volume.

There is one problem for a non-representational update semantics which we have to mention and which we cannot solve here. How to deal with conflicting information, corrections, and withdrawal of information? In a representational semantics it is fairly easy to correct the assertion that Judy is in Paris with the statement “No, Judy is in Prague.” One could simply wipe out the record for “Judy is in Paris” and replace it by one recording that she is in Prague. (In general, this is not without pitfalls, though.) However, if we have reached a state modeled by possibilities in which Judy is in Paris, it is not clear how we could or should extend this set of possibilities to one in which Judy may not be in Paris, and leave other independent information intact. (Anyway, it is unclear on both a representational and non-representational account what should count as ‘independent information’.) For such corrections current systems of dynamic semantics offer only a blind ‘die or survive’-scenario. If new information contradicts currently established information, we can accept it, and reach the absurd state, the empty set of possibilities which excludes all possibilities from being actual. Or we can refuse the update, and say “Ho, stop, this is not what we have agreed upon.”. Of course, none of these options is very practical or reasonable, and in actual practice corrections and the presentation of conflicting information normally leads to a negotiation of what has
to be accepted after all. It may be clear, though, that this type of discussion goes beyond the confines of straightforward systems of update semantics, and it must be submitted that, so far, no solution to this issue has been offered in the literature.

1.3 This Volume
Before we engage in a thematic discussion of the contributions to this volume, it may be useful to explain the order in which they appear. The twelve contributions are grouped in four sections of three papers each, which display their thematic coherence. As will become clear from the subsequent discussion, there are also many cross-connections though. The first three sections start with what may be labeled a ‘classical’ contribution. The first section (on update semantics) starts with Jeroen Groenendijk’s “The Logic of Interrogation” which can be taken to be the starting point of the whole volume, and which has appeared as such in the Proceedings of SALT IX, 1999. The second section (on topic and focus) starts with Gerhard Jäger’s “Only Updates”, which has appeared in the Proceedings of the Tenth Amsterdam Colloquium, 1996. The other papers in this section are true elaborations of this paper. The third section (on implicatures and exhaustiveness) starts with Henk Zeevat’s “Exhaustivity, Questions and Plurals in Update Semantics”. This is a substantially revised version of his “Questions and Exhaustivity in Update Semantics”, which has appeared in the Proceedings of the International Workshop on Computational Semantics, 1994. These ‘classical’ papers appear as the first in each of the three sections, the further order of papers is alphabetical. The last section (on intonation and syntax) provides a truly new angle on the subjects discussed, so it does not contain any classical paper—or not yet, for that matter.

1.3.1 Update Semantics
Jeroen Groenendijk’s paper “The Logic of Interrogation” carries its pun right in the title. Interrogations are normally carried out to gain new information. Logic, as traditionally conceived, is only concerned with conclusions based on pre-given premises which already entail these conclusions. They ought not bring us something new. Adopting a broader view, however, ‘logic’ is concerned with valid reasoning, be it from the structure of our minds, language, practices, or reality (which is where logic or λογος\(^{13}\) etymologically stems from). In accordance with the Gricean program, Groenendijk sets out to make logic and pragmatics

\(^{13}\)The classical Greek word was used for a wide variety of concepts such as language, understanding, reason, doctrine, structure, and principle.
meet, and to account for particular aspects of games of information exchange. The core notion here is not that of a logically valid conclusion, but that of a ‘pertinent’ move in a dialogue game.

In order to lay bare the very characteristics of them, Groenendijk focuses on a very specific type of dialogue game, with two players, the interrogator and the witness, each of which has its own obvious role to play. The interrogator raises issues, and the witness is supposed to answer them. Good deal. This allows for a very straightforward definition of a ‘pertinent’ move, which is, basically, non-redundant: a question from the interrogator is pertinent if it raises a new issue; a statement from the witness is pertinent if it contributes new information. Interestingly, but not unexpectedly, this goes right across the notions of entailment proposed in logical systems for games of argumentation. Entailed questions and assertions are superfluous and therefore, pragmatically, deviant. Interesting contributions are those that are not superfluous.

On the basis of these quite basic insights Groenendijk succeeds in showing why some elementary discourses are or are not felicitous (or ‘pertinent’ as he calls it), and why they get their most likely interpretation. As a response to “Who rescued Bea?” the reply that Alf rescued Bea and no-one else implies that Alf was the sole Bea-rescuer; in response to the question “Whom did Alf rescue?”, however, the very same answer gets the quite different interpretation that Bea was the only one rescued by Alf. In Groenendijk’s formal language, and in keeping with his notion of pertinence, these facts fall right into place. This is a neat example of how, concentrating on a special design toy language, one can account for some apparently fundamental data. The results, it must be observed, are similar to the observations from Jäger on only, and it must be emphasized, as Groenendijk himself notices, that ‘real discourse’ can be much more flexible and creative than artificial models are. In this respect the empirical data on intonation reported by Šafařová are rather telling.

Balder Ten Cate and Chung-chieh Shan provide an axiomatization of Groenendijk’s logic of interrogation which is both logically and linguistically most interesting. Groenendijk’s notion of entailment can be captured by means of the logical notion of interpolation, and more in particular in terms of Evert Beth’s definability theorem. Established logical findings, thus, do not only contribute to our understanding of the logic of interrogation, but suitable variants of it also suggest interesting modifications of this logic. One of these is a suitable modification of the logic to allow variable domains, and the linguistic and computational consequences of this move are discussed.

Paul Dekker advocates a broader perspective on games of infor-
mation exchange. Without committing anyone to the very special role of interrogator or witness, his idea is that all interlocutors come with their own information and questions, and that the ideal is that the very questions get answered on the basis of the information distributively present. There are many ways in which this goal can be achieved, if it is achievable at all. An interesting result is that the aim of the participants in a conversation is to seek to achieve these goals, sometimes by making queries and statements that might not directly contribute to the envisaged goals. The devise of efficient strategies, therefore, does not seem to be totally obvious, and is left to pragmatic or decision theoretic types of reasoning about the discourse, its possible goals, the interlocutors, and the information they have about that.

The three perspectives on games of information exchange, Groenendijk’s arguably more linguistic one, ten Cate and Shan’s more logical one, and Dekker’s more pragmatic one, raise a number of principled issues. Some data are neatly accounted for in Groenendijk’s approach, i.e., the interpretation of focused answers to specific questions. The merits of, e.g., counterquestions, it seems, can hardly be explained without resort to the pragmatics of discourse. In either case we need to have access to a reasoning component, dealing with entailments between questions and answers. Obviously ten Cate and Shan’s system provides a very first and promising start, but in the end we would need a richer epistemic logic to reason about the facts of discourse and the information exchanged.

All three contributions raise the issue where, if at all, the borderline should be drawn between logic and pragmatics. Logic, narrowly conceived, is engaged with valid entailment relations between sets of indicative sentences. It must be clear from these contributions, though, that logic naturally expands its scope to interrogative sentences as well. Moreover, in order to establish the relevance of utterances in a discourse, it is required to reason about the point they can be taken to make. Lots of work for an epistemic logic. It is not clear, though, how much of this can be put on the logician’s agenda. Many, or even most, day-to-day inferences draw from practical or pragmatical assumptions about the people who are engaged in games of information exchange. Logic can be used to model these assumptions, but it certainly should not be taken to motivate them. The main, and moderate, moral seems to be, then, that no principled distinction can be drawn as yet, and that we would like existing (logical and pragmatical) formalisms to interact, in the most productive ways.
1.3.2 Topic and Focus

Rooth (1985) has effectively drawn attention to the ambiguity, and intonation sensitivity, of the following pair of examples:

(15) In Saint Petersburg, [officers]$_F$ always escorted ballerinas.
In Saint Petersburg, officers always escorted [ballerinas]$_F$.

The first appears to be a (universal or generic) claim about ballerinas, the second one is about officers. Another telling pair of examples is from Pieter A.M. Seuren (p.c.):

(16) Frederick always/only [sleeps]$_F$ at work.
Frederick always/only sleeps at [work]$_F$.

If the emphasis is on sleeps, it seems to indicate that Frederick is a hangabout. If the emphasis is on work, Frederick appears to be an incorrigible workaholic. Gerhard Jäger can be credited for observing another kind of context-sensitivity:

(17) Who is wise?
Only Socrates is wise.

(18) Which Athenian is wise?
Only Socrates is wise.

In the first example, Socrates is claimed to be the only wise person in the world. In the second, it seems, Socrates is claimed to be the only wise Athenian. All three pairs of examples can be taken to show that information structure is relevant to interpretation, and the three contributions to this section can be taken to capitalize on that.

Jäger’s paper was the first to extend the coverage of the dynamic paradigm to topic and focus sensitive phenomena associated with the use of the term “only”. It defines a neat system ULQA which accommodates the updates with both questions and assertions in a Groenendijk-style manner. An intriguing, innovation is the treatment of Wh-questions as questions embedded under a (possibly restricted) universal quantifier. Thus:

(19) Who is wise?
is interpreted as asking for each individual in a relevant domain whether he or she is wise or not. Similarly:

(20) Which Athenian is wise?
asks for each Athenian whether he or she is wise or not. Jäger accounts for these data by rendering the interpretation of in particular atomic formulas context dependent in the following sense: any such formula At only provides a proper update of an information state if it addresses a current question under discussion. While the information state is
modeled as the set of possible answers to current questions, an update with \(At \) does not simply preserve the possibilities where \(At \) is true, but only those which figure in an answer that strictly implies the truth of \(At \).\footnote{This is not totally unproblematic, for the interpretation of an (embedded) conditional such as \(p \rightarrow q \) is trivial if \(\neg p \) is not a question in the input information state. Exercise: show triviality of \(p \rightarrow q \) in the empty information state \(W \times W \).} As a consequence, quantified sentences get restricted to individuals which are known to satisfy certain properties, or whose possession of that property is under discussion. Consider again:

(21) Only Socrates is wise.

The contents of this sentence are rendered by the formula: \(\forall x(Wx \rightarrow x = s) \). In the system of ULQA the universal quantifier is restricted to the people who are known or questioned to be wise. So in case this sentence serves as a reply to question (20), it is taken to assert that Socrates is the only wise Athenian. In response to the question “Who is wise?”\footnote{This is not totally unproblematic, for the interpretation of an (embedded) conditional such as \(p \rightarrow q \) is trivial if \(\neg p \) is not a question in the input information state. Exercise: show triviality of \(p \rightarrow q \) in the empty information state \(W \times W \).}, however, it is generally taken to assert that Socrates is the only wise person in the world. (In response to no question, the reply is trivial.)

The other two contributions to this section can be seen to render the effects of domain restriction in a more sophisticated manner, linguistically and empirically speaking. Jäger models contextual restriction by means of an implicit modal operation in the interpretation of atomic formulas (universal quantification over possibilities in possible answers), and relative to information states which are partitions. Maria Aloni, David Beaver, Brady Clark and Robert van Rooij and Paul Dekker employ more fine-grained question meanings, the so-called abstracts underlying these partitions: sets of (sequences of) individuals satisfying the property under discussion. Subsequent quantifiers can thus be explicitly restricted to these sets of (sequences of) individuals. Besides this, both Aloni et al. and Dekker make Jäger’s type of modality explicit: in Aloni et al. it appears as an operator \(\partial \) which presupposes that certain questions are under discussion; Dekker employs an abstract operator \(ELSE \) which can be used to identify a set of individuals currently known to possess properties under discussion.

Elaborating on Gawron, Aloni et al. combine an update semantics of questions with an explicit analysis of (free) focus and its pragmatic and semantic role. On this account, questions introduce topics, formalized as dynamic information states. An introduced topic structures the context as in Groenendijk (1999), but it can also be presupposed by subsequent focused structures and it has the potential to restrict subsequent quantification. In this proposal, then, the dynamics of questions
does not only involve their potential to raise issues which structure the factual information shared in conversations, but also concerns their impact on the felicity (or congruence) and meaning of their focused answers. The paper also models the distinction, put forward in Beaver and Clark (2003), between focus sensitive operators like only and topic sensitive operators like always. The focus sensitivity of the former derives from a grammatical mechanism, whereas the interpretation of the latter is a purely pragmatic matter, and determined by discourse topic.

Paul Dekker’s elegant analysis minimally defines topical domain restriction and uses it for a compositional analysis of (quantified) constituent answers, like “Who gave what to whom? Mary a picture to a boy”. Constructions like these are known in the linguistic literature as ‘stripping’ or ‘bare argument ellipsis’ or ‘gapping’ (Ross, 1970), and are problematic for syntactic approaches to ellipsis because, for example, they do not respect constituency. Dekker’s theory shows that a semantic/pragmatic analysis of gapping can be given where the reconstruction of the missing material follows as a case of dynamic topical domain restriction. It is minimal in the sense that it does not need to resort to keeping track of information about variables. Discourse information (indicative as well as interrogative) is modeled directly, and anaphoric take up and domain restriction is not mediated by the (arbitrary) choice of variables. All relevant information is modeled as a pure set-theoretic construct out of objects in the domain. The paper also provides an analysis of the particle ELSE which can be used in a proper and compositional interpretation of locutions like “Nobody else” and “Somebody else”, as a matter of fact, the result of a decomposition of Zeevat’s epistemic exhaustivity operator (see Zeevat, 1994b, a predecessor of Zeevat, this volume).

An important issue arising from these contributions concerns the relation between the logical notions of entailment, answerhood and pertinence defined purely in terms of propositional content versus the more discourse oriented notions of anaphora, topical domain restriction and congruence depending more on discourse information than on factual information. Jäger’s implicit account of topical domain restrictions purely in terms of partitions had some empirical drawbacks, showing that a proper account of discourse phenomena require more fine-grained structures, e.g. dynamic information states as in Aloni et al, or equivalently, sequences of witnesses as in Dekker’s contribution.

1.3.3 Implicatures and Exhaustiveness
As we already have seen, exhaustification is a crucial issue in the theory of questions and answers, but its impact is certainly not confined to
that. Exhaustification in a sense refers to limits, and it gives you a/the bit of information that allows you to know all the other information you needed to know. Thus, as we have seen, (23) in reply to (22) can be taken to mean (24):

(22) Who has sneakily eaten from the pie?
(23) Amanda, Ben, and Curt and Donny.
(24) Amanda, Ben, Curt and Donny are the ones who have sneakily eaten from the pie.

But with scalar predications other exhaustification effects show up:

(25) How fast may I drive here in an urban area?
(26) You may drive 50 kilometers an hour.
(27) How slow may I drive on the highway?

In reply to question (25), answer (26) can be taken to mean “50 and no more”, while in reply to (27) the very same answer can be taken to mean “50 and no less”. Also:

(28) Prof. Vamp can prove this theorem in five minutes.
(29) Prof. Champ can lecture for five hours.

Typically, example (28) can be used to refer to an upper limit, indicating that Vamp can do it in five minutes or less; example (29) typically indicates a lower bound, Champ can lecture for five hours or more. Exhaustification thus is a highly context dependent and flexible notion, and not just a question of the relevant domain but also of the relations that elements of that domain have entered into with one another. One of the main issues in the literature pertains to the question how much of the exhaustification effects should be assigned to the semantics (logical form, (lexical) meaning) of the various constructions, and how much to pragmatics (i.e., implicatures, world knowledge). The three contributions to this section approach the phenomena of exhaustification from various perspectives.

Approaches to exhaustification prior to Groenendijk and Stokhof and Zeevat were purely stipulative, e.g., they derived effects of exhaustification with a universal operator Szabolcsi (1981), with definiteness Moltmann (1992), and with maximality Rullmann (1995). But such operators fail to capture exhaustification in general: it is a smarter notion. Henk Zeevat provides an attempt to use semantic tools to get a proper grip on what underlies the concept of exhaustification. Exhausted interpretations basically are the strongest interpretations of free variables (discourse markers), given a set of (primitive) meaning postulates. It is extraordinarily successful, as it applies uniformly to questions, answers, focus, plurals and scalar implicatures, but it still faces problems:
the set-up assumptions are costly/stipulative, there still are the cross-world identity problems (and the problematic notion of an ‘ontological alternative’), and it relies on meaning postulates to an extreme extent.

Robert van Rooij and Katrin Schulz’s contribution deals with the particle ‘only’ and its relation with exhaustification. The analysis systematically distinguishes between a semantic and a pragmatic contribution of ‘only’. The sentence “Only Mary smokes” means that nobody except Mary smokes and has the pragmatic implication that Mary smokes. The account of the semantic contribution of ‘only’ is based on Groenendijk and Stokhof’s rule of exhaustive interpretation in contrast with alternative approaches (e.g., Rooth, 1985, 1992) where ‘only’ is taken to quantify over focus alternatives, rather than over ‘background’ alternatives (as in von Stechow, 1991). The pragmatic contribution of ‘only’ is characterized as a conversational implicature formally derived by Gricean maxims formalized in terms of operations mapping sentences to their minimal interpretations. These same operations are shown to derive the exhaustive interpretation of answers without ‘only’. In the latter case, exhaustification ceases to be a semantic operation and is understood as a pragmatic interpretation function that strengthens the semantic meaning of a sentence.

Benjamin Spector’s contribution also deals with a pragmatic notion of exhaustification. Defending a globalist account of implicatures against recent attacks (e.g., Chierchia, 2002) the article offers a precise formalization of the Gricean reasoning underlying scalar implicatures and shows that exhaustification of answers can be obtained by the same pragmatic mechanisms. Gricean implicature derivations typically rely on the assumption of a set of alternatives against which the used sentence is compared to. Spector gives a perspicuous characterization of the alternatives involved in the derivation of exhaustive meanings, identifying them with the positive answers to the question under discussion, thus raising the interesting empirical question of why exhaustive answers are never among these alternatives. Given this choice of alternatives the analysis is shown to imply an asymmetry between positive and negative answers, while only the former are predicted to be interpreted as exhaustive. These predictions seem to be correct when tested on interesting data involving answers with (combination of increasing and) decreasing quantifiers.

Many issues on the semantic-pragmatic interface arise from these contributions. The contributions from Van Rooij and Schulz and Spector offer a purely pragmatic explanation of exhaustification of answers as derived by Gricean reasoning. Applications for exhaustification in natural language however gives a long list: e.g., questions, answers, fo-
cus, quantifiers, scalar implicatures, Evans effects, plurals, clefts, comparatives, free relatives and degree relatives (see Butler, 2001), and it is not clear how a purely pragmatic analysis can be extended to cover these genuinely semantic phenomena. Zeevat’s dynamic analysis seems to blur the distinction between semantics and pragmatics, and its operator explains exhaustification of answers as well as a large number of semantic data. Nevertheless, as it is clear from all three contributions, exhaustification and scalar implicatures have a common core that should be explained and a Gricean analysis of the latter phenomenon, although not totally without stipulation—in the choice of the relevant alternatives, is less costly than an explanation in terms of Zeevat’s operator.

1.3.4 Intonation and Syntax

The papers that we’ve seen thus far have concentrated almost exclusively on matters of meaning and use. But this has only been achieved with the (muted) accompaniment of basic assumptions about the forms taken by interrogatives and related constructions (e.g., focus constructions). The papers of this section are more explicit about the consequences for the form-meaning mapping of the theories they explore. To put it another way, they show exacting concern for (i), what semantics and pragmatics require from other areas of linguistic theorising, (ii), what semantics and pragmatics can offer to relieve other areas from internal problems, and (iii), what semantics and pragmatics can get by without (that is, how explicit does the linguistic code need to be?). In particular, the focus is on connections with intonation and syntactic forms.

Maria Aloni, Alastair Butler and Darrin Hindsill start the section off with an analysis in the framework of Bidirectional Optimality Theory (BiOT) that predicts the placement of nuclear accent within a focus. From the start they harness the advantages of a default framework by making a syntactic constraint, the Nuclear Stress Rule, a weak constraint. This salvages an otherwise problematic constraint with clear counterexamples, yet a strong intuitive appeal. This is also an interesting move from the perspective of constraint origins, since constraints that follow from syntactic form are frequently hard; and indeed the hardest constraint is the Focus Set Rule, which is essentially another constraint on form, requiring the accent to fall within the syntactic scope of the focus. Their setup also has interesting consequences for views on optimisation, as well as language acquisition, suggesting that the production task needs only unidirectional optimisation, while the interpretation task crucially relies on bidirectional optimisation, that
is, optimising with respect to the hearer and speaker perspectives. This paper also raises a very interesting theoretical question. In linguistics it is generally assumed that syntactic rules are forbiddingly hard (specific structures are either right or wrong) while pragmatic constraints can be overruled. Aloni et al.’s paper shows that a neat account of focus and stress can be obtained by ranking pragmatic constraints harder than syntactic ones. Besides thus motivating an optimality theoretic account of the phenomena, this raises the question whether focus and stress should be assigned a special place in an overall syntactic theory, or whether we have to rethink the impact of structural and pragmatic rules more in general (and if so, how). Of course the issue is much more general than we can handle in a volume like this, so it is left for further study.

Alastair Butler offers a novel take on a range of so-called intervention effects that can arise in interrogatives with WH-phrases. Existing syntactic accounts of such phenomena have become extremely involved, and largely internally inconsistent, assuming ad-hoc constraints on logical forms (e.g., Beck, 1996a) or stipulation (e.g., Rizzi, 1990, Pesetsky, 2000) (see Butler and Mathieu, 2004 for a recent overview). Here the syntax is extremely simple, while the burden for an account is shifted to the semantics, following a trend initiated by Honcoop (1998). Of course, assumptions about form are required for the account to go through. But the demands placed on syntax are very slight and lead to the least controversial of positions, with requirements that are consistent with all major theories of syntax. And here we see another of this volume’s recurring themes: the methodology of the approach is to concentrate on a specially designed toy language with an explicit semantics that derives apparently fundamental data without any additional stipulation. This time the data captures the diversity in coding strategies for WH-interrogatives cross-linguistically. It is striking indeed to see how such minimal tools can be used to uniformly account for a vast set of cross-linguistic data which may have seemed to be so heterogeneous at first glance.

Using a framework that combines Veltman’s update semantics with a simple semantics for questions, Marie Šafářová shows how it is possible to pinpoint a consistent interpretative role for intonation patterns, again with a toy language especially designed for the (intonation) data to be accounted for. Specifically, she argues that the properties of rising declaratives can be captured uniformly by taking the final rise to be a kind of “intonational adverb”, comparable with *it might be that*. This is in sharp contrast with previous accounts, which have typically attributed a meaning of ‘questionhood’ to the rising declarative, owing
to the questioning effect that results from its use. Such a position is
tenable because the questioning effect is shown to fall out from the
semantics/pragmatics set up as a derived pragmatic effect, following
from the uncertainty that is actually signalled. We therefore have a
significant instance where semantics/pragmatics is able to do without
a triggering interrogative form, allowing for declaratives to be consis-
tently coded as statements. Not only is this a very welcome extension of
the empirical scope of linguistic theory. It also serves to correct a wide-
spread theoretical assumption that final rises (on both declaratives and
interrogatives) are associated (one-to-one) with questionhood. Empir-
ical data do not at all support this assumption, and Šafářová shows
how to correct it from a theoretical (semantic / pragmatic) perspec-
tive. Innovative as the findings (empirically and theoretically speaking)
may be, it leaves the interested linguist with the burning question: why
should we have thought so in the first place? One of the morals may
be that, however transparent they are, intuitions need not be decisive,
neither in logic, nor in language.

To sum up, the contributions of this section give a taster as to
how the tools assembled from findings in semantics and pragmatics
can be used to tackle problems that have originated from other areas
of study (here, intonation and syntax). These are interesting devel-
lopments, as they promise to breathe new awareness into areas that
have been widely researched, but have lacked conclusive outcomes. Of
course, what gets opened up here is a two-way street: semantics and
pragmatics, as practised in this volume, have much to learn from the
other areas of linguistic theorising.

1.4 Remaining Issues

So far we’ve stressed the relevance of the work which this volume re-
ports upon for semantic and pragmatic theory. But are there implica-
tions for other areas of linguistic theorising (e.g., syntax, morphology,
intonation, language acquisition, language evolution)? How will these
findings fit in with the findings of other areas? Can they be used to
strengthen existing viewpoints in other areas, perhaps resolving internal
inconsistencies, or will they lead to an importing of radically new
ideas, or a syphoning off of the burden of explanation? That such ques-
tions can now be addressed is testimony to the maturity of the ideas
this volume presents. A couple of open questions have become mani-
fest throughout this volume, and we will briefly comment upon them,
without suggesting particular answers.

In the first place, the whole notion of a question is as open as
it was at the start of this introduction. We can take the moral from Šafářová and keep to a uniform syntactic distinction between declaratives and interrogatives but then it remains unclear how to assess the results of the other proposals which build on a semantic/pragmatic distinction, at least on the level of logical form. Another open issue pertains to the interpretation of questions which can also be identified syntactically: where-, how- and why-questions. These have not been addressed explicitly in this volume and it remains to be seen whether the same semantic / pragmatic tools like the ones advocated can be used to deal with these types of questions.

In the second place, various contributions (in particular those of Aloni et al., Butler, Dekker, and Zeevat) have pointed at the close correspondence, logically, and cross-linguistically, between Wh-questions and indefinites. At present it is not clear how to evaluate such correspondences. Should we assume a universal category, or should or could we deem these correspondences to be accidental by-products of interpretational mechanisms? (For, as observed by Butler, the use of an indefinite may license a namely-continuation, or a who-then-question, but it is not clear whether this should be accounted for structurally or by means of pragmatic mechanisms.)

In the third place, various proposals incorporate notions of presupposition, contradiction, and correction in discourse. None of these provide or build upon an elaborate theory of accommodation and revision. This is fortunate to the extent that the proposals, with their specific targets, probably ought to be independent of that. Nevertheless, the proposals remain incomplete as long as there is no consensus on the appropriate form of a theory of accommodation, and current literature does not seem to supply that.

An actual theme, in the fourth place, is whether questions can be outscoped, or to what extent. This volume does not directly deal with embedded questions, like we find in wonder who-, and know whether-constructions, where questions arguably figure in the scope of structural operators. Nevertheless, their interpretation is highly relevant for judging the interaction between semantics (meaning) and pragmatics (interpretation). On the face of it, questions can also be embedded in other questions, that is, if we take a run of the mill syntactic analysis of multiple wh-questions. In more classical proposals, like that of, e.g., Groenendijk and Stokhof (1984), multiple wh-phrases are treated as unary, but polyadic operators; some proposals in this volume suggest that more compositional approaches are possible, which for instance allow one to combine an interrogative noun phrase like “Which professors” with an interrogative verb phrase like “failed which students”.

Finally, questions can be embedded under generalized quantifiers so as to yield, e.g., pair list readings. The phenomenon has already been discussed in Groenendijk and Stokhof, among others, and recently Krifka (2003) has given this discussion a new twist. There is no room here for an elaborate discussion of this phenomenon of embedding questions, but a little reflection will show that an unlimited possibility of embedding is not linguistically realistic. Only a few type of quantifiers and operators allow questions in their semantic scope, and it is not clear beforehand which ones do, and why.

In the fifth and final place, hardly anything has been said about the computation of questions, the generation of answers, and (automated) information retrieval. Arguably, the contribution from ten Cate and Shan comes closest to that, but not yet as close to be interesting for the computational community. This is a pity in as far as the focus on the semantics and pragmatics of questions answers should in principle allow the prospect of bridging theoretical and practical endeavours. The modest, moral here can only be that the gap between these two types of approaches is still felt to be too large to be bridged in the single step we can take in one volume. The Chunnel was not built in one day either. We hope this volume shows, not only, that much of the ground-preparing work on the theoretical level still remains to be done; at the same time, as well, that the theoretical work is shifting its focus towards more practical matters, as indeed can be expected from research on the semantics / pragmatics interface.