Introduction

Proposals, Responses, and Polarity Particles in English

2

Proposals, Responses, and Polarity Particles in English

1 Introduction

Examples of utterances involving 'polarity particles':

(1) Amy left.
 a. Yes, she did. / *No, she did.
 b. No, she didn't. / *Yes, she didn't.

(2) Did Amy leave?
 a. Yes, she did. / *No, she did.
 b. No, she didn't. / *Yes, she didn't.

Some issues that arise:

• What are the particles languages use?
 – 2 particle languages (English)
 – 3 particle languages (Romanian, French, German)

(3) A: Paul a telefonat. / A telefonat Paul? 'P called. / Did P call?'
 B: Da, (a telefonat) / Nu, nu a telefonat. 'Yes, (he did) / No, (he didn't).

(4) A: Paul nu a telefonat. / Nu a telefonat Paul? 'P did not call. / Did P not call?'
 B: Ba da / *Nu, (a telefonat). 'Yes, he DID.'

• Questions of distribution and interpretation:
 – What does each particle do?
 – What are the distributional restrictions in each language?
 – How do languages with 2 particles differ from those with 3?
 – What are the distributional restrictions in each language?

• Anaphoric nature of polarity particles:
 – not good in 'out of the blue' contexts
 – Relation between polarity particle and antecedent will be used as a window onto the discourse function of the antecedent
 – polarity particles are fine in reactions to assertions and polar questions
 – not fine in reactions to assertions. Certain types of disjunctive assertions

Basic ideas to be worked out:

• Effect of utterance types, and in particular, assertions and polar questions, on context:
 – propositional information associated to particular discourse commitments
 – propositional information associated to particular discourse commitments
 – propositional information associated to particular discourse commitments

• Polarity particles mark responses to a given proposal as being affirmative or negative.

• Some issues arise:

 B: Yes, she did. / Yes, she didn't.
 A: No, she didn't. / No, she did.

First part of the talk (Section 2):

• Polarity and particle configurations
• Consequences of responses to assertions being affirmative or negative
• Defining stimuli of responses to polar questions and responses to
• One common thread: context

Proposals, Responses, and Polarity Particles

Proposals, Responses, and Polarity Particles

Polarity Particles in English and Beyond
2.1 Proposals as sets of possibilities

Inquisitive semantics framework (see Groenendijk and Roelofsen (2009); Ciardelli and Roelofsen (2011); AnderBois (2011))

• Semantics of a sentence captures both its informative content and the nature of the proposal made in uttering it.

• Propositions are defined as sets of possibilities.

• Each possibility is a set of possible worlds.

• Each possibility represents a potential update of the common ground.

Example: The propositions expressed by (1) and (2) given in (a) and (b)

\[\{ \[\text{Amy left} \] \} \]
\[\{ \[\text{Did Amy leave?} \] \} \]

(a)
\[\{ w_1, w_2 \} \]
\[\{ w_3, w_4 \} \]

(b)
\[\{ w_1 \} \]
\[\{ w_2, w_3, w_4 \} \]

Notation:

• the proposition expressed by a sentence \(\varphi \):

2.2 Highlighting

We need a more refined formal representation of proposals if we want to account for polarity particle distribution.

We highlight one of the proposed possibilities as a response from other participants that provides enough information to establish at least one of the possibilities in [a] and

In uttering \(\text{Any/If/And/or Not?} \) a speaker:

1. commits to the actual world being contained in at least one of the possibilities in [a] and

2. requests a response from other participants that provides enough information to establish at least one of the possible worlds in [a] and

Back to our examples:

• (7) highlights the possibility that the door is open

• (8) highlights the possibility that the door is closed

• (9) highlights both possibilities

In Figure 1:

• \(w_1 \) and \(w_2 \) are worlds where the door is open

• \(w_3 \) and \(w_4 \) are worlds where the door is closed

• highlighted possibilities are displayed with a thick border

Back to accounting for yes and no:

• highlighted possibilities serve as antecedents for subsequent anaphoric expressions

1 See Roelofsen and van Gool (2010); Pruitt and Roelofsen (2011); Farkas (2011).

See van den Bosch (1999); van der Meer and Rijke (2005).
Polarity particles are anaphoric expressions. Preliminary proposal for yes/no responses:

- A yes answer to an initiative \(\varphi \) presupposes that there is exactly one highlighted alternative for \(\varphi \).
- If this presupposition is met, yes confirms this highlighted alternative.
- A no answer simply rejects all the highlighted possibilities for \(\varphi \).

Account of the contrast between (7), (8), and (9):

- In (7), there is exactly one highlighted alternative. So:
 - yes is licensed; it confirms the highlighted alternative, conveying that the door is open;
 - no denies the highlighted alternative, conveying that the door is closed.

- In (8), there is again exactly one highlighted alternative. So:
 - yes is licensed; it confirms the highlighted alternative, conveying that the door is closed;
 - no denies the highlighted alternative, conveying that the door is open.

- In (9), there are two highlighted alternatives. So:
 - yes is not licensed—its presupposition is not met;
 - no signals that the door is neither open nor closed, which is contradictory.

Some additional welcome predictions:

- Polarity particles can only be used in responses, not 'out of the blue'.
- Polarity particles cannot be used in response to wh-questions, assuming that such questions do not highlight any possibilities.

2.3 Positive and negative possibilities

The distinction between highlighted and non-highlighted possibilities is not enough:

- Susan failed the exam.
 - Yes, she failed.
 - *No, she failed.

- Susan didn’t pass the exam.
 - Yes, she didn’t pass.
 - No, she didn’t pass.

So far:

- (10) and (11) are equivalent.

The distinction between highlighted and non-highlighted possibilities is not enough:

- In (10), the door is opened; in (11), the door is closed.

The distinction between highlighted and non-highlighted possibilities is not enough:

- (10) and (11) are equivalent.

Some additional welcome predictions:

- Polarity particles can only be used in responses, not 'out of the blue'.

Polarity particles can only be used in responses, not 'out of the blue'.

- If this presupposition is met, yes confirms the highlighted alternative.
- If this presupposition is met, yes confirms the highlighted alternative.
- A yes answer to an initiative \(\varphi \) presupposes that there is exactly one highlighted alternative for \(\varphi \).

- Polarity particles can only be used in responses, not 'out of the blue'.
- Polarity particles can only be used in responses, not 'out of the blue'.

- If this presupposition is met, yes confirms the highlighted alternative.
- If this presupposition is met, yes confirms the highlighted alternative.
- A yes answer to an initiative \(\varphi \) presupposes that there is exactly one highlighted alternative for \(\varphi \).

- Polarity particles can only be used in responses, not 'out of the blue'.
- Polarity particles can only be used in responses, not 'out of the blue'.

- If this presupposition is met, yes confirms the highlighted alternative.
- If this presupposition is met, yes confirms the highlighted alternative.
- A yes answer to an initiative \(\varphi \) presupposes that there is exactly one highlighted alternative for \(\varphi \).

- Polarity particles can only be used in responses, not 'out of the blue'.
- Polarity particles can only be used in responses, not 'out of the blue'.

- If this presupposition is met, yes confirms the highlighted alternative.
- If this presupposition is met, yes confirms the highlighted alternative.
- A yes answer to an initiative \(\varphi \) presupposes that there is exactly one highlighted alternative for \(\varphi \).

- Polarity particles can only be used in responses, not 'out of the blue'.
2.6 Account of polarity particles in English

Where is the connection between features in PolP and the polarity particles of a language?

\[\{+\} = \{+\} \] = \{+\} \\
\[\{-\} = \{-\} \] = \{-\} \\
\[\{\} = \{\} \] = \{\}

Possible feature value combinations:

- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\}

Presuppositions of feature combinations in PolP:

- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\}

Two issues that have to be settled:

- Which features / feature combinations have to be realized?
- Which particles can be used to realize which features, and which features / feature combinations in PolP?

Polarity particles realize two sets of features:

2.4 Absolute and relative polarity features

- Absolute polarity features
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\}

Presuppositions of feature combinations in PolP:

- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\}

Two issues that have to be settled:

- Which features / feature combinations have to be realized?
- Which particles can be used to realize which features, and which features / feature combinations in PolP?

Polarity particles realize two sets of features:

- Absolute polarity features
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\}

Presuppositions of feature combinations in PolP:

- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\}

Two issues that have to be settled:

- Which features / feature combinations have to be realized?
- Which particles can be used to realize which features, and which features / feature combinations in PolP?

Polarity particles realize two sets of features:

- Absolute polarity features
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\}

Presuppositions of feature combinations in PolP:

- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\}

Two issues that have to be settled:

- Which features / feature combinations have to be realized?
- Which particles can be used to realize which features, and which features / feature combinations in PolP?

Polarity particles realize two sets of features:

- Absolute polarity features
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\}

Presuppositions of feature combinations in PolP:

- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\}

Two issues that have to be settled:

- Which features / feature combinations have to be realized?
- Which particles can be used to realize which features, and which features / feature combinations in PolP?

Polarity particles realize two sets of features:

- Absolute polarity features
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\}

Presuppositions of feature combinations in PolP:

- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\}

Two issues that have to be settled:

- Which features / feature combinations have to be realized?
- Which particles can be used to realize which features, and which features / feature combinations in PolP?

Polarity particles realize two sets of features:

- Absolute polarity features
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\} \\
 - \{reverse\} + \{\}

Presuppositions of feature combinations in PolP:

- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\} \\
- \{reverse\} + \{\}

Two issues that have to be settled:

- Which features / feature combinations have to be realized?
- Which particles can be used to realize which features, and which features / feature combinations in PolP?
Expectation:

• Features that are more marked have higher "realization needs" and thus will tend to be expressed more than features that are unmarked.

Connection between absolute and relative features:

(13)

- \([\text{same}]\) and \([\text{+}]\) are the unmarked values in the two sets
- \([\text{reverse}]\) and \([\text{−}]\) are the marked values in the two sets

Possible syncretisms (see Pope (1976)):

(14)

- one particle for \([\text{same}]\) and \([\text{+}]\)
- one particle for \([\text{reverse}]\) and \([\text{−}]\)

Realization rules in English:

(15)

- \([\text{same}]\) and \([\text{+}]\) realized by yes
- \([\text{reverse}]\) and \([\text{−}]\) realized by no

Polarity particles in English do double duty:

- they are used to realize both absolute and relative polarity features

Main predictions:

(16)

- \([\text{same}, \text{+}]\) can only be realized by yes
- \([\text{reverse}, \text{−}]\) can only be realized by no
- \([\text{same}, \text{−}]\) can be realized by yes or no
- \([\text{reverse}, \text{+}]\) can be realized by yes or no

In the case of \([\text{same}, \text{−}]\) we expect preference for no over yes because \([\text{−}]\) is more marked than \([\text{same}]\).

In the case of \([\text{reverse}, \text{+}]\) both features have high realization needs; special conditions may obtain.

In English, \([\text{reverse}, \text{+}]\) polarity phrases must have an explicit prejacent with verum focus, reflecting the contrastive positive polarity of the response:

A: Peter didn't call.
B: Yes, he DID. / No, he DID.

Forms of assertion acceptance that do not register speaker as Source:

(17)

- In the case of \([\text{same}, \text{−}]\) we expect preference for no over yes.
- In the case of \([\text{reverse}, \text{+}]\) both features have high realization needs; special conditions may obtain.

Additional forms of assertion acceptance that do not register speaker as Source:

(18)

- Yes, he didn't. / No, he didn't.
- Yes, he DID. / No, he DID.

Factors that are more marked have higher realization needs and thus will tend to be expressed more than other factors.

Forms of assertion acceptance that do not register speaker as Source:

(19)

- Yes, he didn't. / No, he didn't.
- Yes, he DID. / No, he DID.

Forms of assertion acceptance that do not register speaker as Source:

(20)

- Yes, he didn't. / No, he didn't.
- Yes, he DID. / No, he DID.

Forms of assertion acceptance that do not register speaker as Source:

(21)

- Yes, he didn't. / No, he didn't.
- Yes, he DID. / No, he DID.

Forms of assertion acceptance that do not register speaker as Source:

(22)

- Yes, he didn't. / No, he didn't.
- Yes, he DID. / No, he DID.

Forms of assertion acceptance that do not register speaker as Source:

(23)

- Yes, he didn't. / No, he didn't.
- Yes, he DID. / No, he DID.

Forms of assertion acceptance that do not register speaker as Source:

(24)

- Yes, he didn't. / No, he didn't.
- Yes, he DID. / No, he DID.
Some welcome consequences: (i) acceptance of answer to an information seeking polar question cannot be signaled with *yes* but it can be signaled with *ok, aha*; (ii) acceptance of answer to quiz question can be signaled with *yes* *(iii) ok* cannot be used to answer a question affirmatively because author of the answer of a question must be Source *(25)*

A: Is Johnny coming with us to the movies?
B: *(Yes)*, he is. / No, he isn’t.
A: Aha. / Ok. / #Yes.

(26)

A: So, Johnny, what’s the capital of California?
J: Sacramento.
A: Yes, you’re right. Let’s go on to a more difficult one.

So far we have:

• proposed an account of what polarity particles can do in general
• accounted for the distribution and interpretation of *yes* and *no* in responses in English
• set up certain cross-linguistic expectations

Next questions:

• What happens in other languages?
• In particular, what happens in 3 polarity particle languages?

3 A dedicated *reverse* particle: the case of Romanian

Some cross-linguistic expectations concerning polarity particles:

• the distinction between absolute and relative polarity features leads to expectation of – systems that rely primarily on one or the other parameter (English, Japanese)
– systems with richer inventories: particles specialized for relative features and particles and particles specialized for absolute features
– special realization strategies for *reverse*,+
– if special *reverse*,+ the particle may be based on *reverse* or it may be based on

In this section: 3 particle system of Romanian where third particle is dedicated to expressing

11

3.1 The polarity particles of Romanian

Particle inventory:

<table>
<thead>
<tr>
<th>da</th>
<th>nu</th>
<th>bu</th>
</tr>
</thead>
</table>

(Farkas, 2011)

(27)

Realization rules for Romanian (realization potential of polarity particles)

a. *+[+] is realized by *da*

b. *[−] is realized by *nu*

c. *[+reverse] is realized by *bu*

(28)

Expression rules for Romanian (realization needs of polarity features)

a. Absolute features must be realized (by a particle or by the prejacent)

b. *[+same] is not realized

c. *[+reverse] is always realized in *[reverse],+ responses

d. *[+reverse] is optionally realized in *[reverse],− responses to assertions

e. *[+reverse] is not realized in *[reverse],− responses to questions

(29)

Data accounted for:

• *da* realizes *+[+] and therefore possible only in *[same],+[+] and *[reverse],+[+] responses

(30)

[+same],+[+]

A: Paul a telefonat./A telefonat Paul? ‘Paul called./Did Paul call?’
B: Da/*Nu, (a telefonat). ‘Yes / *No (he called).’

(31)

[+reverse],+[−]

A: Paul nu a telefonat./Nu a telefonat Paul? ‘P did not call./Did P not call?’
B: Ba da/*Nu, (a telefonat). ‘Yes, he DID.’

(32)

[+reverse],[−] A: Paul a telefonat. ‘Paul called.’
B: (Ba) Nu, (nu a telefonat). ‘No, (he didn’t call).’

12
References

Other acceptance/combination or rejection markers

Across languages we see different strategies to satisfy the high realization needs of

Thus the emphasis on the nature of

Languages have different strategies to satisfy the high realization needs of

The particle inventory and realization rules may differ from language to language. For example:

In order to account for the distribution and interpretation of polarity particles we need to

4 Conclusion

The absolute polarity of a response in Romanian must be overtly realized:

The particle inventory and realization rules may differ from language to language.

Languages have different strategies to satisfy the high realization needs of

Languages may lack a [+] particle but have a [-] particle (Latin, Irish)

Languages may lack a [-] particle but have a [+] particle (French, Danish)

Languages could have a dedicated [+] particle (French, Danish)

Languages could have a dedicated [-] particle based on a [+] version (German)

Languages may lack a [+] particle based on a [-] version (French, Danish)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)

Languages may lack a [-] particle based on a [+] version (German)